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Preface
This book is the primary reference and technical manual for the
ARM7TDMI microprocessor core and contains a complete functional
description for the core. The information in this manual applies to all
process revisions of the core. Specific technology-dependent values,
such as electrical timing, can be found in the appropriate ARM7TDMI
Microprocessor Core Datasheet, which is available from LSI Logic.

Audience

This document was prepared for logic designers and applications
engineers and is intended to provide an overview of LSI Logic’s
FlexStream™ system and to explain how to use the FlexStream software
in the initial stages of chip design.

This document assumes that you have some familiarity with
microprocessors and related support devices. The people who benefit
the most from this book are:

• Engineers and managers who are evaluating the processor for
possible use in a system

• Engineers who are designing the processor into a system

Organization

This document has the following chapters and appendixes:

• Chapter 1, Introduction

• Chapter 2, Signal Descriptions

• Chapter 3, Programmer’s Model

• Chapter 4, ARM Instruction Set Summary
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• Chapter 5, THUMB Instruction Set Summary

• Chapter 6, Memory Interface

• Chapter 7, Coprocessor Interface

• Chapter 8, Debug Interface

• Chapter 9, EmbeddedICE Macrocell

• Chapter 10, Instruction Cycle Operations

• Chapter 11, Production Test

• Chapter 12, Specifications , see CW001007 ARM7TDMI
Microprocessor Core Datasheet

• Appendix A, ARM7TDMI Changes

Related Publications

ARM7TDMI Data Sheet, available from Advanced RISC Machines Ltd.
as document No. ARM DDI 0029E

CW001004 ARM7TDMI Microprocessor Core Datasheet, available from
LSI Logic.

CW001007 ARM7TDMI Microprocessor Core Datasheet, available from
LSI Logic.

Standard Test Access Port and Boundary-Scan Architecture, IEEE
Standard 1149.1 - 1990.

ARM Architectural Reference Manual, Advanced RISC Machines Ltd and
Prentice-Hall.

Conventions Used in This Manual

The first time a word or phrase is defined in this manual, it is italicized.

The word assert means to drive a signal true or active. The word
deassert means to drive a signal false or inactive.

Hexadecimal numbers are indicated by the prefix “0x” —for example,
0x32CF. Binary numbers are indicated by the prefix “0b” —for example,
0b0011.0010.1100.1111.
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Signal names are shown in capital letters.

Active LOW signals are indicated by the prefix “n” —for example,
nRESET.

The manual refers to a 32-bit quantity as a word, a 16-bit value as a
halfword, and an 8-bit quantity as a byte.

Document Version Release Date Comments

Advance December 1996 Initial release.

Preliminary January 1998

This document was derived from the ARM document
ARM7TDMI Data Sheet. Appendix A, ARM7TDMI Changes
contains a list of the differences between LSI Logic and
ARM’s documents.

Final November 1998
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Chapter 1
Introduction
This chapter introduces the core architecture, and shows block, core, and
functional diagrams. It contains the following sections:

• Section 1.1, “Introduction,” page 1-1

• Section 1.2, “ARM7TDMI Architecture,” page 1-2

• Section 1.3, “CoreWare® Program,” page 1-6

1.1 Introduction

This section introduces the overall core capabilities and highlights the
beneficial features of LSI Logic’s ARM7TDMI core implementation.

1.1.1 General Information

The ARM7TDMI architecture is a member of the Advanced RISC
Machines (ARM) family of general purpose 32-bit microprocessors,
which offer high performance for very low power consumption and price.

The ARM® architecture is based on Reduced Instruction Set Computer
(RISC) principles, and the instruction set and related decode mechanism
are much simpler than those of microprogrammed Complex Instruction
Set Computers. This simplicity results in a high instruction throughput
and impressive real time interrupt response from a small and cost
effective chip.

Pipelining is employed so that all parts of the processing and memory
systems can operate continuously. Typically, while one instruction is
being executed, its successor is being decoded, and a third instruction
is being fetched from memory.
ARM7TDMI Microprocessor Core 1-1
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The ARM memory interface has been designed to allow the performance
potential to be realized without incurring high costs in the memory
system. Speed critical control signals are pipelined to allow system
control functions to be implemented in standard low-power logic, and
these control signals facilitate the exploitation of the fast local access
modes offered by industry-standard dynamic RAMs.

1.1.2 LSI Logic’s ARM7TDMI Implementation

The ARM7TDMI Microprocessor Core described in this manual is
LSI Logic's proprietary version of the ARM7TDMI microcontroller.
LSI Logic's implementation represents the world's first synthesizable
version of the ARM7TDMI. LSI Logic has further optimized this
synthesizable version to facilitate implementation of complex system-on-
a-chip ASICs in LSI Logic's state-of-the-art ASIC flows.

The ARM7TDMI RTL (register-transfer level) version was developed in
close conjunction with ARM, Ltd. ensuring 100% compatibility with the
ARM7TDMI specification. LSI Logic’s core has identical functionality and
external interfaces making both the hardware and software 100%
compatible with the full custom cores presently available from all other
ARM7TDMI licensees. LSI Logic's RTL has been designed with single
phase clocking and simplified register schemes wherever possible. This
greatly eases synthesis and timing analysis of the surrounding logic and
thereby facilitates the design of high-quality products with a minimum
time-to-market. The RTL has been synthesized and taken through place,
route, and test insertion resulting in a hardmacro ready for a system-on-
a-chip design. Full scan test insertion provides high fault coverage while
keeping test costs to a minimum. Finally, to implement full scan,
LSI Logic has added eight additional test signals to the core (for a full
description of these signals, see Chapter 2, “Signal Descriptions.”)

1.2 ARM7TDMI Architecture

The ARM7TDMI processor employs a unique architectural strategy
known as THUMB, which makes it ideally suited to high volume
applications with memory restrictions, or applications where code density
is an issue.
1-2 Introduction
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1.2.1 The THUMB Concept

The key idea behind THUMB is that of a super-reduced instruction set.
Essentially, the ARM7TDMI processor has two instruction sets:

• Standard 32-bit ARM set

• A 16-bit THUMB set

The THUMB set’s 16-bit instruction length allows it to approach twice the
density of standard ARM code while retaining most of the ARM
processor’s performance advantage over a traditional 16-bit processor
using 16-bit registers. This is possible because THUMB code operates
on the same 32-bit register set as ARM code.

THUMB code is able to provide up to 65% of the size of ARM code, and
160% of the performance of an equivalent ARM processor connected to
a 16-bit memory system.

1.2.2 THUMB Advantages

THUMB instructions operate with the standard ARM register
configuration, allowing excellent interoperability between ARM and
THUMB states. Each 16-bit THUMB instruction has a corresponding
32-bit ARM instruction with the same effect on the processor model.

The major advantage of a 32-bit (ARM) architecture over a 16-bit
architecture is its ability to manipulate 32-bit integers with single
instructions, and to address a large address space efficiently. When
processing 32-bit data, a 16-bit architecture will take at least two
instructions to perform the same task as a single ARM instruction.

However, not all the code in a program will process 32-bit data (for
example, code that performs character string handling), and some
instructions, like Branches, do not process any data at all.

If a 16-bit architecture only has 16-bit instructions, and a 32-bit
architecture only has 32-bit instructions, then overall the 16-bit
architecture will have better code density, and better than one half the
performance of the 32-bit architecture. Clearly 32-bit performance comes
at the cost of code density.
ARM7TDMI Architecture 1-3
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THUMB breaks this constraint by implementing a 16-bit instruction length
on a 32-bit architecture, making the processing of 32-bit data efficient
with a compact instruction coding. This provides far better performance
than a 16-bit architecture, with better code density than a 32-bit
architecture.

THUMB also has a major advantage over other 32-bit architectures with
16-bit instructions. This is the ability to switch back to full ARM code and
execute at full speed. Thus critical loops for applications such as

• Fast interrupts

• DSP algorithms

can be coded using the full ARM instruction set, and linked with THUMB
code. The overhead of switching from THUMB code to ARM code is
folded into subroutine entry time. Various portions of a system can be
optimized for speed or for code density by switching between THUMB
and ARM execution as appropriate.

Figure 1.1 Processor Core Diagram
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Figure 1.2 ARM7TDMI Core Diagram
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1.3 CoreWare ® Program

An LSI Logic core is a fully defined, optimized, and reusable block of
logic. It supports industry-standard functions and has predefined timing
and layout. The core is also an encrypted RTL simulation model for a
wide range of VHDL and Verilog simulators.

The CoreWare library contains an extensive set of complex cores for the
communications, consumer, and computer markets. The library consists
of high-speed interconnect functions such as the GigaBlaze® G10® Core,
MIPS embedded\microprocessors, MPEG-2 decoders, a PCI core, and
many more.

The library also includes megafunctions or building blocks, which provide
useful functions for developing a system on a chip. Through the
CoreWare program, you can create a system on a chip uniquely suited
to your applications.

Each core has an associated set of deliverables, including:

• Encrypted RTL simulation models for both Verilog and VHDL
environments

• A System Verification Environment (SVE) for RTL-based simulation

• Synthesis and timing shells

• Netlists for full timing simulation

• Complete documentation

• LSI Logic FlexStream™ design support

LSI Logic's FlexStream design solution provides seamless connectivity
between products from leading electronic design automation (EDA)
vendors and LSI Logic's manufacturing environment. Standard interfaces
for formats and languages such as VHDL, Verilog, Waveform Generation
Language (WGL), Physical Design Exchange Format (PDEF), and
Standard Delay Format (SDF) allow a wide range of tools to interoperate
within the LSI Logic’s FlexStream design environment. In addition to
design capabilities, full scan Automatic Test Pattern Generation (ATPG)
tools and LSI Logic's specialized test solutions can be combined to
provide high-fault coverage test programs that assure a fully functional
design.
1-6 Introduction
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Because your design requirements are unique, LSI Logic is flexible in
working with you to develop your system-on-a-chip CoreWare design.
Three different work relationships are available:

• You provide LSI Logic with a detailed specification and LSI Logic
performs all design work.

• You design some functions while LSI Logic provides you with the
cores and megafunctions, and LSI Logic completes the integration.

• You perform the entire design and integration, and LSI Logic
provides the core and associated deliverables.

Whatever the work relationship, LSI Logic's advanced CoreWare
methodology and ASIC process technologies consistently produce
Right-First-Time™ silicon.
CoreWare® Program 1-7
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Chapter 2
Signal Descriptions
This chapter describes all ARM7TDMI core interface signals and is
divided into the following sections:

• Section 2.1, “Core Logic Diagram,” page 2-1

• Section 2.2, “Clock Signals,” page 2-3

• Section 2.3, “Interrupt Signals,” page 2-3

• Section 2.4, “Bus Control Interface,” page 2-4

• Section 2.5, “Debug Interface,” page 2-7

• Section 2.6, “Boundary Scan Control Interface,” page 2-9

• Section 2.7, “Boundary Scan Interface,” page 2-11

• Section 2.8, “Processor Interface,” page 2-12
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2.1 Core Logic Diagram

Figure 2.1 is the core logic diagram and lists the core signal interfaces.
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Figure 2.1 ARM7TDMI Logic Diagram
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2.2 Clock Signals

ECLK External Clock Output Output
In normal operation, this is simply MCLK (optionally
stretched with nWAIT) exported from the core. When the
core is being debugged, this is TCLK. This allows
external hardware to track when the ARM7TDMI core is
clocked. When FULLSCAN is asserted, ECLK is held
LOW.

MCLK Memory Clock Input Input
This clock times all ARM7TDMI memory accesses and
internal operations. The clock has two distinct phases

• phase 1 in which MCLK is LOW

• phase 2 in which MCLK (and nWAIT) are HIGH

The clock may be stretched indefinitely in either phase to
allow access to slow peripherals or memory. Alternatively,
the nWAIT input may be used with a free running MCLK
to achieve the same effect.

nWAIT Not Wait Input
When accessing slow peripherals, ARM7TDMI can be
made to wait for an integer number of MCLK cycles by
driving nWAIT LOW. Internally, nWAIT is ANDed with
MCLK and must only change when MCLK is LOW. If
nWAIT is not used it must be tied HIGH.

2.3 Interrupt Signals

ISYNC Synchronous Interrupts Input
When LOW indicates that the nIRQ and nFIQ inputs are
to be synchronized by the ARM7TDMI core. When HIGH
disables this synchronization for inputs that are already
synchronous.

nFIQ Not Fast Interrupt Request Input
This is an interrupt request to the processor which
causes it to be interrupted if taken LOW when the
appropriate enable in the processor is active. The signal
is level-sensitive and must be held LOW until a suitable
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response is received from the processor. nFIQ may be
synchronous or asynchronous, depending on the state of
ISYNC.

nIRQ Not Interrupt Request Input
The same as nFIQ, but with lower priority. May be taken
LOW to interrupt the processor when the appropriate
enable is active. nIRQ may be synchronous or
asynchronous, depending on the state of ISYNC.

2.4 Bus Control Interface

ABE Address Bus Enable Input
This is an input signal which, when LOW, puts the
address bus drivers into a high impedance state. This
signal has a similar effect on the following control signals:
MAS[1:0], nRW, LOCK, nOPC and nTRANS. ABE must
be tied HIGH when there is no system requirement to
turn off the address drivers.

ALE Address Latch Enable Input
This input is used to control transparent latches on the
address outputs. Normally the addresses change during
phase 2 to the value required during the next cycle, but
for direct interfacing to ROMs they are required to be
stable to the end of phase 2. Taking ALE LOW until the
end of phase 2 will ensure that this happens. This signal
has a similar effect on the following control signals:
MAS[1:0], nRW, LOCK, nOPC and nTRANS. If the
system does not require address lines to be held in this
way, ALE must be tied HIGH. The address latch is static,
so ALE may be held LOW for long periods to freeze
addresses.

APE Address Pipeline Enable Input
When HIGH, this signal enables the address timing
pipeline. In this state, the address bus plus MAS[1:0],
nRW, nTRANS, LOCK and nOPC change in phase 2
prior to the memory cycle to which they refer. When APE
is LOW, these signals change in phase 1 of the actual
cycle. Please refer to Chapter 6, "Memory Interface" for
details of this timing.
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BIGEND Big Endian Configuration Input
When this signal is HIGH the processor treats bytes in
memory as being in Big Endian format. When it is LOW,
memory is treated as Little Endian.

BUSDIS Bus Disable Output
This signal is HIGH when INTEST is selected on scan
chain 0 or 4 and may be used to disable external logic
driving onto the bidirectional data bus during scan
testing. This signal changes on the falling edge of TCK.

BUSEN Data Bus Configuration Input
This is a static configuration signal which determines
whether the bidirectional data bus, D[31:0], or the
unidirectional data buses, DIN[31:0] and DOUT[31:0], are
to be used for transfer of data between the processor and
memory. Refer also to Chapter 6, "Memory Interface".

When BUSEN is LOW, the bidirectional data bus, D[31:0]
is used. In this case, DOUT[31:0] is driven to value
0x00000000, and any data presented on DIN[31:0] is
ignored.

When BUSEN is HIGH, the bidirectional data bus,
D[31:0] is ignored and must be left unconnected. Input
data and instructions are presented on the input data
bus, DIN[31:0], output data appears on DOUT[31:0].

DBE Data Bus Enable Input
This is an input signal which, when driven LOW, puts the
data bus D[31:0] into the high impedance state. This is
included for test purposes, and should be tied HIGH at all
times.

ECAPCLK Extest Capture Clock Output
This signal removes the need for the external logic in the
test chip which was required to enable the internal
3-state bus during scan testing. This need not be brought
out as an external pin on the test chip.

HIGHZ Output
This signal denotes that the HIGHZ instruction has been
loaded into the TAP controller. See Chapter 8, "Debug
Interface" for details.
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nENIN Not Enable Input Input
This signal may be used in conjunction with nENOUT to
control the data bus during write cycles. See Chapter 6,
"Memory Interface".

nENOUT Not Enable Output Output
During a data write cycle, this signal is driven LOW
during phase 1, and remains LOW for the entire cycle.
This may be used to aid arbitration in shared bus
applications. See Chapter 6, "Memory Interface".

nENOUTI Not Enable Output ICE Output
During a coprocessor register transfer C-cycle from the
EmbeddedICE macrocell communications channel
coprocessor to the ARM7TDMI core, this signal goes
LOW during phase 1 and stays LOW for the entire cycle.
This may be used to aid arbitration in shared bus
systems.

nRESET Not Reset Input
This is a level sensitive input signal which is used to start
the processor from a known address. A LOW level will
cause the instruction being executed to terminate
abnormally. When nRESET becomes HIGH for at least
one clock cycle, the processor will restart from address 0.
nRESET must remain LOW (and nWAIT must remain
HIGH) for at least two clock cycles. During the LOW
period the processor will perform dummy instruction
fetches with the address incrementing from the point
where reset was activated. The address will overflow to
zero if nRESET is held beyond the maximum address
limit.

TBE Test Bus Enable Input
When driven LOW, TBE forces the data bus D[31:0], the
Address bus A[31:0], plus LOCK, MAS[1:0], nRW,
nTRANS and nOPC to high impedance. This is as if both
ABE and DBE had both been driven LOW. However, TBE
does not have an associated scan cell and so allows
external signals to be driven high impedance during scan
testing. Under normal operating conditions, TBE should
be held HIGH at all times.
2-6 Signal Descriptions
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2.5 Debug Interface

BREAKPT Breakpoint Input
This signal allows external hardware to halt the execution
of the processor for debug purposes. When HIGH causes
the current memory access to be a breakpoint. If the
memory access is an instruction fetch, ARM7TDMI will
enter debug state if the instruction reaches the execute
stage of the ARM7TDMI pipeline. If the memory access
is for data, ARM7TDMI will enter debug state after the
current instruction completes execution.This allows
extension of the internal breakpoints provided by the
EmbeddedICE macrocell module. See Chapter 6, "Mem-
ory Interface".

COMMRX Communications Channel Receive Output
When HIGH, this signal denotes that the communications
channel receive buffer is empty. This signal changes on
the rising edge of MCLK. See Section 9.11.1, “Debug
Communications Control Registers,” for more information
on the debug communications channel.

COMMTX Communications Channel Transmit Output
When HIGH, this signal denotes that the communications
channel transmit buffer is empty. This signal changes on
the rising edge of MCLK. See Section 9.11.1, “Debug
Communications Control Registers,” for more information
on the debug communications channel.

DBGACK Debug Acknowledge Output
When HIGH indicates ARM7TDMI is in debug state.

DBGEN Debug Enable Input
This input signal allows the debug features of ARM7TDMI
to be disabled. This signal should be driven LOW when
debugging is not required.

DBGRQ Debug Request Input
This is a level sensitive input, which when HIGH causes
ARM7TDMI to enter debug state after executing the
current instruction. This allows external hardware to force
ARM7TDMI into the debug state, in addition to the
debugging features provided by the EmbeddedICE
macrocell. See Chapter 9, "EmbeddedICE Macrocell" for
details.
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DBGRQI Internal Debug Request Output
This signal represents the debug request signal which is
presented to the processor. This is the combination of
external DBGRQ, as presented to the ARM7TDMI
macrocell, and bit 1 of the debug control register. Thus
there are two conditions where this signal can change.

• When DBGRQ changes, DBGRQI will change after a
propagation delay.

• When bit 1 of the debug control register has been
written, this signal will change on the falling edge of
TCK when the TAP controller state machine is in the
Run-Test/Idle state.

See Chapter 9, "EmbeddedICE Macrocell" for details.

EXTERN0 External Input 0 Input
This is an input to the EmbeddedICE logic in the
ARM7TDMI which allows breakpoints and/or watchpoints
to be dependent on an external condition.

EXTERN1 External Input 1 Input
This is an input to the EmbeddedICE logic in the
ARM7TDMI which allows breakpoints and/or watchpoints
to be dependent on an external condition.

nEXEC Not Executed Output
When HIGH indicates that the instruction in the execution
unit is not being executed, because, for example, it has
failed its condition code check.

RANGEOUT0 EmbeddedICE Rangeout0 Output
This signal indicates that EmbeddedICE watchpoint
register 0 has matched the conditions currently present
on the address, data and control buses. This signal is
independent of the state of the watchpoint’s enable
control bit. RANGEOUT0 changes when ECLK is LOW.

RANGEOUT1 EmbeddedICE Rangeout1 Output
This signal is the same as RANGEOUT0 but corresponds
to EmbeddedICE watchpoint register 1.
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2.6 Boundary Scan Control Interface

DRIVEBS Boundary Scan Cell Enable Output
This signal is used to control the multiplexers in the scan
cells of an external boundary scan chain. This signal
changes in the Update-IR state when scan chain 3 is
selected and either the INTEST, EXTEST, CLAMPor CLAMPZ
instruction is loaded. When an external boundary scan
chain is not connected, this output should be left
unconnected.

ECAPCLKBS Extest Capture Clock for Boundary Scan Output
This is a TCK2 wide pulse generated when the TAP
controller state machine is in the Capture-DR state, the
current instruction is EXTESTand scan chain 3 is
selected. This is used to capture the macrocell outputs
during EXTEST. When an external boundary scan chain is
not connected, this output should be left unconnected.

ICAPCLKBS Intest Capture Clock Output
This is a TCK2 wide pulse generated when the TAP
controller state machine is in the Capture-DR state, the
current instruction is INTEST and scan chain 3 is
selected. This is used to capture the macrocell outputs
during INTEST. When an external boundary scan chain is
not connected, this output should be left unconnected.

nHIGHZ Not HIGHZ Output
This signal is generated by the TAP controller when the
current instruction is HIGHZ. This is used to place the
scan cells of that scan chain in the high impedance state.
When an external boundary scan chain is not connected,
this output should be left unconnected.

PCLKBS Boundary Scan Update Clock Output
This is a TCK2 wide pulse generated when the TAP
controller state machine is in the Update-DR state and
scan chain 3 is selected. This is used by an external
boundary scan chain as the update clock. When an
external boundary scan chain is not connected, this
output should be left unconnected.
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RSTCLKBS Boundary Scan Reset Clock Output
This signal denotes that either the TAP controller state
machine is in the RESET state or that nTRST has been
asserted. This may be used to reset external boundary
scan cells.

SDINBS Boundary Scan Serial Input Data Output
This signal contains the serial data to be applied to an
external scan chain and is valid on the falling edge of
TCK.

SDOUTBS Boundary Scan Serial Output Data Input
This control signal is provided to ease the connection of
an external boundary scan chain. This is the serial data
out of the boundary scan chain. It should be setup to the
rising edge of TCK. When an external boundary scan
chain is not connected, this input should be tied LOW.

SHCLKBS Boundary Scan Shift Clock, Phase 1 Output
This control signal is provided to ease the connection of
an external boundary scan chain. SHCLKBS is used to
clock the master half of the external scan cells. When in
the Shift-DR state of the state machine and scan chain 3
is selected, SHCLKBS follows TCK1. When not in the
Shift-DR state or when scan chain 3 is not selected, this
clock is LOW. When an external boundary scan chain is
not connected, this output should be left unconnected.

SHCLK2BS Boundary Scan Shift Clock, Phase 2 Output
This control signal is provided to ease the connection of
an external boundary scan chain. SHCLK2BS is used to
clock the master half of the external scan cells. When in
the Shift-DR state of the state machine and scan chain 3
is selected, SHCLK2BS follows TCK2. When not in the
Shift-DR state or when scan chain 3 is not selected, this
clock is LOW. When an external boundary scan chain is
not connected, this output should be left unconnected.
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2.7 Boundary Scan Interface

IR[3:0] TAP Controller Instruction Register Output
These 4 bits reflect the current instruction loaded into the
TAP controller instruction register. The instruction
encoding is as described in Section 8.8, “Public Instruc-
tions”. These bits change on the falling edge of TCK
when the state machine is in the Update-IR state.

nTDOEN Not TDO Enable Output
When LOW, this signal denotes that serial data is being
driven out on the TDO output. nTDOEN would normally
be used as an output enable for a TDO pin in a packaged
part.

nTRST Not Test Reset Input
Active LOW reset signal for the boundary scan logic. This
pin must be pulsed or driven LOW to achieve normal
device operation, in addition to the normal device reset
(nRESET). For more information, see Chapter 8, "Debug
Interface".

SCREG[3:0] Scan Chain Register Output
These 4 bits reflect the ID number of the scan chain
currently selected by the TAP controller. These bits
change on the falling edge of TCK when the TAP state
machine is in the Update-DR state.

TAPSM[3:0] TAP Controller State Machine Output
This bus reflects the current state of the TAP controller
state machine, as shown in Section 8.4.2, “The JTAG
State Machine”. These bits change off the rising edge of
TCK.

TCK Test Clock Input
The clock used for test operations.

TCK1 TCK, Phase 1 Output
This clock is a buffered version of TCK. TCK1 is HIGH
when TCK is HIGH.
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TCK2 TCK, Phase 2 Output
This clock is a buffered, inverted version of TCK. TCK2
is HIGH when TCK is LOW. Please note that TCK2 has
a slight overlap with the TCK1 signal.

TDI Test Data Input Input
Boundary scan logic input.

TDO Test Data Output Output
Boundary scan logic output.

TMS Test Mode Select Input
Boundary scan test mode select signal.

2.8 Processor Interface

nM[4:0] Not Processor Mode Output
These are output signals which are the inverses of the
internal status bits indicating the processor operation
mode.

TBIT THUMB Mode Output
When HIGH, this signal denotes that the processor is
executing the THUMB instruction set. When LOW, the
processor is executing the ARM instruction set. This
signal changes in phase 2 in the first execute cycle of a
BX instruction.

2.9 Memory Interface

A[31:0] Addresses Output
This is the processor address bus. If ALE (Address Latch
Enable) is HIGH and APE (Address Pipeline Enable) is
LOW, the addresses become valid during phase 2 of the
cycle before the one to which they refer and remain so
during phase 1 of the referenced cycle. Their stable
period may be controlled by ALE or APE as described in
Section 2.4, “Bus Control Interface”.

ABORT Memory Abort Input
This is an input which allows the memory system to tell
the processor that a requested access is not allowed.
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BL[3:0] Byte Latch Control Input
These signals control when data and instructions are
latched from the external data bus. When BL[3] is HIGH,
the data on D[31:24] is latched on the falling edge of
MCLK. When BL[2] is HIGH, the data on D[23:16] is
latched and so on. Please refer to Chapter 6, "Memory
Interface" for details on the use of these signals.

D[31:0] Data Bus Bidirectional
These are bidirectional signal paths which are used for
data transfers between the processor and external
memory. During read cycles (when nRW is LOW), the
input data must be valid before the end of phase 2 of the
transfer cycle. During write cycles (when nRW is HIGH),
the output data will become valid during phase 1 and
remain valid throughout phase 2 of the transfer cycle.

Note: This bus is driven at all times, irrespective of whether
BUSEN is HIGH or LOW. When D[31:0] is not being used
to connect to the memory system it must be left
unconnected. See Chapter 6, "Memory Interface".

DIN[31:0] Data Input Bus Input
This is the input data bus which may be used to transfer
instructions and data between the processor and
memory. This data input bus is only used when BUSEN
is HIGH. The data on this bus is sampled by the
processor at the end of phase 2 during read cycles (i.e.
when nRW is LOW).

DOUT[31:0] Data Output Bus Output
This is the data out bus, used to transfer data from the
processor to the memory system. Output data only
appears on this bus when BUSEN is HIGH. At all other
times, this bus is driven to value 0x00000000. When in
use, data on this bus changes during phase 1 of store
cycles (i.e. when nRW is HIGH) and remains valid
throughout phase 2.

LOCK Locked Operation Output
When LOCK is HIGH, the processor is performing a
locked memory access, and the memory controller must
wait until LOCK goes LOW before allowing another
device to access the memory. LOCK changes while
MCLK is HIGH, and remains HIGH for the duration of the
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locked memory accesses. It is active only during the data
swap (SWP) instruction. The timing of this signal may be
modified by the use of ALE and APE as described in
Section 2.4, “Bus Control Interface.” This signal may also
be driven to a high impedance state by driving ABE LOW.

MAS[1:0] Memory Access Size Output
These are output signals used by the processor to
indicate to the external memory system when a word
transfer or a halfword or byte length is required. The
signals take the value 0b10 for words, 0b01 for
halfwords and 0b00 for bytes. 0b11 is reserved. These
values are valid for both read and write cycles. The
signals will normally become valid during phase 2 of the
cycle before the one in which the transfer will take place.
They will remain stable throughout phase 1 of the transfer
cycle. The timing of the signals may be modified by the
use of ALE and APE in a way similar to the A[31:0],
please refer to Section 2.4, “Bus Control Interface”. The
signals may also be driven to high impedance state by
driving ABE LOW.

nMREQ Not Memory Request Output
This signal, when LOW, indicates that the processor
requires memory access during the following cycle. The
signal becomes valid during phase 1, remaining valid
through phase 2 of the cycle preceding that to which it
refers.

nRW Not Read/Write Output
When HIGH this signal indicates a processor write cycle;
when LOW, a read cycle. It becomes valid during phase
2 of the cycle before that to which it refers, and remains
valid to the end of phase 1 of the referenced cycle. The
timing of this signal may be modified by the use of ALE
and APE in a way similar to the A[31:0] signals, please
refer to Section 2.4, “Bus Control Interface”. This signal
may also be driven to a high impedance state by driving
ABE LOW.

nTRANS Not Memory Translate Output
When this signal is LOW it indicates that the processor is
in user mode. It may be used to tell memory
management hardware when translation of the addresses
should be turned on, or as an indicator of nonuser mode
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activity. The timing of this signal may be modified by the
use of ALE and APE in a way similar to the A[31:0]
signals, please refer to Section 2.4, “Bus Control Inter-
face”. This signal may also be driven to a high impedance
state by driving ABE LOW.

SEQ Sequential Address Output
This output signal will become HIGH when the address
of the next memory cycle will be related to that of the last
memory access. The new address will either be the same
as the previous one or four greater in ARM state, or
two greater in THUMB state.

The signal becomes valid during phase 1 and remains so
through phase 2 of the cycle before the cycle whose
address it anticipates. It may be used, in combination with
the low-order address lines, to indicate that the next cycle
can use a fast memory mode (for example DRAM page
mode) and/or to bypass the address translation system.

2.10 Coprocessor Interface

CPA Coprocessor Absent Input
A coprocessor which is capable of performing the
operation that ARM7TDMI is requesting (by asserting
nCPI) should take CPA LOW immediately. If CPA is HIGH
at the end of phase 1 of the cycle in which nCPI went
LOW, ARM7TDMI will abort the coprocessor handshake
and take the undefined instruction trap. If CPA is LOW
and remains LOW, ARM7TDMI will busy-wait until CPB is
LOW and then complete the coprocessor instruction.

CPB Coprocessor Busy Input
A coprocessor which is capable of performing the
operation which ARM7TDMI is requesting (by asserting
nCPI), but cannot commit to starting it immediately,
should indicate this by driving CPB HIGH. When the
coprocessor is ready to start it should take CPB LOW.
ARM7TDMI samples CPB at the end of phase 1 of each
cycle in which nCPI is LOW.
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nCPI Not Coprocessor Instruction Output
When ARM7TDMI executes a coprocessor instruction, it
will take this output LOW and wait for a response from
the coprocessor. The action taken will depend on this
response, which the coprocessor signals on the CPA and
CPB inputs.

nOPC Not Opcode Fetch Output
When LOW this signal indicates that the processor is
fetching an instruction from memory; when HIGH, data (if
present) is being transferred. The signal becomes valid
during phase 2 of the previous cycle, remaining valid
through phase 1 of the referenced cycle. The timing of
this signal may be modified by the use of ALE and APE
in a way similar to the A[31:0] signals, please refer to
Section 2.4, “Bus Control Interface”. This signal may also
be driven to a high impedance state by driving ABE LOW.

2.11 Test Signals

FULLSCAN Master Scan Mode Select Input
Asserting FULLSCAN enables either Production Test
Mode or Ramtest Mode, depending on the value of
RAMTEST. FULLSCAN should remain asserted for the
duration of scan testing and must be deasserted during
normal operation.

RAMTEST Ramtest Scan Mode Select Input
When FULLSCAN is asserted, asserting RAMTEST
places the core in Ramtest mode. RAMTEST should
remain asserted for the duration of the ramtest scan. If
FULLSCAN is deasserted, asserting RAMTEST will have
no effect on the core state.

RAMSCAN_IN
Ramtest Scan Chain Input Input
During Ramtest Mode, RAMSCAN_IN is the scan input
for the core memory scan chain.

RAMSCAN_OUT
Ramtest Scan Chain Output Output
During Ramtest Mode, RAMSCAN_OUT is the scan
output for the core memory scan chain.
2-16 Signal Descriptions



ARM.book  Page 17  Wednesday, November 25, 1998  1:11 PM
SCAN_EN Global Scan Enable Input
In either Production Test mode or Ramtest mode,
asserting SCAN_EN enables serial loading of the scan
registers through the scan chain.

SCAN_IN Full Scan Chain Input Input
In Production Test mode, SCAN_IN is the scan input for
the core scan chain.

SCAN_OUT FUll Scan Chain Output Output
In Production Test mode, SCAN_OUT is the scan output
for the core scan chain.

WENCTEST Ramtest Write Enable Input
This test signal is used only when FULLSCAN is
asserted. WENCTEST controls core memory writes in
the Ramtest mode. When FULLSCAN is deasserted,
WENCTEST should also be deasserted.
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Chapter 3
Programmer’s Model
This chapter describes the two operating states of the ARM7TDMI. It
contains the following sections:

• Section 3.1, “Processor Operating States,” page 3-1

• Section 3.2, “Switching State,”page 3-2

• Section 3.3, “Memory Formats,” page 3-2

• Section 3.4, “Instruction Length,” page 3-3

• Section 3.5, “Data Types,” page 3-4

• Section 3.6, “Operating Modes,” page 3-4

• Section 3.7, “Registers,” page 3-4

• Section 3.8, “Program Status Registers,” page 3-9

• Section 3.9, “Exceptions,” page 3-11

• Section 3.10, “Interrupt Latencies,” page 3-17

• Section 3.11, “Reset,” page 3-18

• Section 3.12, “Pipeline Architecture,” page 3-18

3.1 Processor Operating States

From the programmer’s point of view, the ARM7TDMI can be in one of
two states:

ARM state which executes 32-bit, word-aligned ARM instructions.

THUMB state which operates with 16-bit, halfword-aligned
THUMB instructions. In this state, the PC uses bit 1 to
select between alternate halfwords.

Note: Transition between these two states does not affect the
processor mode or the contents of the registers.
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3.2 Switching State

This section describes the method for entering either the THUMB or
ARM state.

3.2.1 Entering THUMB State

Entry into THUMB state can be achieved by executing a BX instruction
with the state bit (bit 0) set in the operand register.

Transition to THUMB state will also occur automatically on return from
an exception (IRQ, FIQ, UNDEF, ABORT, SWI etc.), if the exception was
entered with the processor in THUMB state.

3.2.2 Entering ARM State

Entry into ARM state happens:

1. On execution of the BX instruction with the state bit clear in the
operand register.

2. On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT,
SWI etc.). In this case, the PC is placed in the exception mode’s link
register, and execution commences at the exception’s vector
address.

3.3 Memory Formats

ARM7TDMI views memory as a linear collection of bytes numbered
upwards from zero. Bytes 0 to 3 hold the first stored word, bytes 4 to 7
the second and so on. ARM7TDMI can treat words in memory as being
stored either in Big Endian or Little Endian format.

3.3.1 Big Endian Format

In Big Endian format, the most significant byte of a word is stored at the
lowest numbered byte and the least significant byte at the highest
numbered byte. Byte 0 of the memory system is therefore connected to
data lines 31 through 24.
3-2 Programmer’s Model
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Figure 3.1 Big Endian Addresses of Bytes Within Words

3.3.2 Little Endian Format

In Little Endian format, the lowest numbered byte in a word is considered
the word’s least significant byte, and the highest numbered byte the most
significant. Byte 0 of the memory system is therefore connected to data
lines 7 through 0.

Figure 3.2 Little Endian Addresses of Bytes Within Words

3.4 Instruction Length

Instructions are either 32 bits long (in ARM state) or 16 bits long (in
THUMB state).

Note:
♦ Most significant byte is at lowest address.
♦ Word is addressed by byte address of most significant byte.

Higher
Address

Lower
Address

31 24 23 16 15 8 7 0
Word
Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Note:
♦ Most significant byte is at lowest address.
♦ Word is addressed by byte address of least significant byte.

Higher
Address

Lower
Address

31 24 23 16 15 8 7 0
Word
Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0
Instruction Length 3-3
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3.5 Data Types

ARM7TDMI supports byte (8 bit), halfword (16 bit) and word (32 bit) data
types. Words must be aligned to 4-byte boundaries and halfwords to 2-
byte boundaries.

3.6 Operating Modes

ARM7TDMI supports seven modes of operation:

• User (usr): The normal ARM program execution state

• FIQ (fiq): Designed to support a data transfer or channel
process

• IRQ (irq): Used for general purpose interrupt handling

• Supervisor (svc): Protected mode for the operating system

• Abort mode (abt): Entered after a data or instruction prefetch abort

• System (sys): A privileged user mode for the operating system

• Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought
about by external interrupts or exception processing. Most application
programs will execute in User mode. The nonuser modes–known as
privileged modes–are entered in order to service interrupts or
exceptions, or to access protected resources.

3.7 Registers

ARM7TDMI has a total of 37 registers (31 general purpose 32-bit
registers and six status registers), but these cannot all be seen at once.
The processor state and operating mode dictate which registers are
available to the programmer.
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3.7.1 The ARM State Register Set

In ARM state, 16 general registers and one or two status registers are
visible at any one time. In privileged (nonuser) modes, mode-specific
banked registers are visible. Figure 3.3 shows which registers are
available in each mode: the banked registers are marked with a shaded
triangle.

The ARM state register set contains 16 directly accessible registers: R0
to R15. All of these except R15 are general-purpose registers, and may
be used to hold either data or address values. In addition to these, there
is a seventeenth register used to store status information

3.7.1.1 Register 14

Used as the subroutine link register. This receives a copy of R15 when
a Branch and Link (BL) instruction is executed. At all other times it may
be treated as a general-purpose register. The corresponding banked
registers R14_svc, R14_irq, R14_fiq, R14_abt and R14_und are similarly
used to hold the return values of R15 when interrupts and exceptions
arise, or when Branch and Link instructions are executed within interrupt
or exception routines.

3.7.1.2 Register 15

Holds the Program Counter (PC). In ARM state, bits [1:0] of R15 are zero
and bits [31:2] contain the PC. In THUMB state, bit [0] is zero and bits
[31:1] contain the PC.

3.7.1.3 Register 16

This is the CPSR (Current Program Status Register). This contains
condition code flags and the current mode bits.

FIQ mode has seven banked registers mapped to R8–R14
(R8_fiq–R14_fiq). In ARM state, many FIQ handlers do not need to save
any registers. User, IRQ, Supervisor, Abort and Undefined each have two
banked registers mapped to R13 and R14, allowing each of these modes
to have a private stack pointer and link registers.
Registers 3-5
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Figure 3.3 Register Organization in ARM State

3.7.2 The THUMB State Register Set

The THUMB state register set is a subset of the ARM state set. The
programmer has direct access to eight general registers, R0-R7, as well
as the Program Counter (PC), a stack pointer register (SP), a link
register (LR), and the Current Program Status register (CPSR). There
are banked Stack Pointers, Link registers and Saved Process Status
registers (SPSRs) for each privileged mode. This is shown in Figure 3.4.

ARM State General Registers and Program Counter
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Figure 3.4 Register Organization in THUMB State

3.7.3 The Relationship Between ARM and THUMB State Registers

The THUMB state registers relate to the ARM state registers in the
following way:

• THUMB state R0–R7 and ARM state R0–R7 are identical

• THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs
are identical

• THUMB state SP maps onto ARM state R13

• THUMB state LR maps onto ARM state R14

• The THUMB state Program Counter maps onto the ARM state
Program Counter (R15)

This relationship is shown in Figure 3.5.
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PC

System & User FIQ Supervisor Abort IRQ Undefined
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LR_irq

PC
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R1

R2

R3

R4

R5

R6

R7

SP_und

LR_und

PC

THUMB State General Registers and Program Counter

THUMB State Program Status Registers

= Banked Register.
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Figure 3.5 Mapping of THUMB State Registers onto ARM State
Registers

3.7.4 Accessing High Registers in THUMB State

In THUMB state, registers R8–R15 (the High registers) are not part of
the standard register set. However, the assembly language programmer
has limited access to them, and can use them for fast temporary storage.

A value may be transferred from a register in the range R0–R7 (a Low
register) to a High register, and from a High register to a Low register,
using special variants of the MOVinstruction. High register values can
also be compared against or added to Low register values with the CMP
and ADDinstructions.

ARM State

R0

R1

R2

R3

R5

R6

R7

R8

R9

R10

R11

R12

Stack Pointer (R13)

Link Register (R14)

Program Counter (R15)
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R1

R2

R3

R5

R6

R7

Stack Pointer (SP)

Link Register (LR)

Program Counter (PC)

CPSR CPSR

SPSR SPSR

R4R4
Low
Registers

High
Registers

THUMB State
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3.8 Program Status Registers

The ARM7TDMI contains a Current Program Status register (CPSR),
plus five Saved Program Status registers (SPSRs) for use by exception
handlers. These registers

• Hold information about the most recently performed ALU operation

• Control the enabling and disabling of interrupts

• Set the processor operating mode

The arrangement of bits is shown in Figure 3.6.

Figure 3.6 Program Status Register Format

3.8.1 The Condition Code Flags

N Negative/Less Than 31

Z Zero 30

C Carry/Borrow/Extend 29

V Overflow 28

The N, Z, C and V bits are the condition code flags. These may be
changed as a result of arithmetic and logical operations, and may be
tested to determine whether an instruction should be executed.

In ARM state, all instructions may be executed conditionally: see Section
4.3, “Instruction Condition Field,”for details.

In THUMB state, only the Branch instruction is capable of conditional
execution.

31 30 29 28 27 8 7 6 5 4 3 2 1 0

N Z C V Reserved I F T M4 M3 M2 M1 M0
Program Status Registers 3-9
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3.8.2 Reserved Bits

Reserved [27:8]
Bits [27:8] in the Program Status registers are reserved.
When changing a PSR’s flag or control bits, you must
ensure that these unused bits are not altered. Also, your
program should not rely on them containing specific
values, since in future processors they may read as one
or zero.

3.8.3 The Control Bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known
collectively as the control bits. These will change when an exception
arises. If the processor is operating in a privileged mode, they can also
be manipulated by software.

The T Bit Operating State 7
This bit reflects the processor operating state. When this
bit is set, the processor is executing in THUMB state,
otherwise it is executing in ARM state. This is reflected
on the TBIT external signal.

Note that the software must never change the state of the
TBIT in the CPSR. If this happens, the processor will
enter an unpredictable state.

I and F Interrupt Disable Bits [6:5]
The I and F bits are the interrupt disable bits. When set,
these disable the IRQ and FIQ interrupts respectively.

M[4:0] The Mode Bits [4:0]
The M4, M3, M2, M1 and M0 bits (M[4:0]) are the mode
bits. These determine the processor’s operating mode, as
shown in the following table. Not all combinations of the
mode bits define a valid processor mode. Only those
explicitly described should be used. If any illegal value is
programmed into the mode bits, M[4:0], then the
processor will enter an unrecoverable state. If this occurs,
reset should be applied. Table 3.1 lists the mode bit
states and the accessible state registers for each mode.
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3.9 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted
temporarily, for example to service an interrupt from a peripheral. Before
an exception can be handled, the current processor state must be
preserved so that the original program can resume when the handler
routine has finished.

It is possible for several exceptions to arise at the same time. If this
happens, they are dealt with in a fixed order see Section 3.9.10,
“Exception Priorities”.

3.9.1 Action on Entering an Exception

When handling an exception, the ARM7TDMI:

1. Preserves the address of the next instruction in the appropriate Link
register. If the exception has been entered from ARM state, then the
address of the next instruction is copied into the Link register (that
is, current PC + 4 or PC + 8 depending on the exception. See

Table 3.1 Mode Bit States

M[4:0] Mode
Accessible THUMB State
Registers

Accessible ARM State
Registers

0b10000 User R7..R0, LR, SP, PC, CPSR R14..R0, PC, CPSR

0b10001 FIQ R7..R0, LR_fiq, SP_fiq, PC, CPSR,
SPSR_fiq

R7..R0, R14_fiq..R8_fiq, PC,
CPSR, SPSR_fiq

0b10010 IRQ R7..R0, LR_irq, SP_irq, PC,
CPSR, SPSR_irq

R12..R0, R14_irq..R13_irq, PC,
CPSR, SPSR_irq

0b10011 Supervisor R7..R0, LR_svc, SP_svc, PC,
CPSR, SPSR_svc

R12..R0, R14_svc..R13_svc, PC,
CPSR, SPSR_svc

0b10111 Abort R7..R0, LR_abt, SP_abt, PC,
CPSR, SPSR_abt

R12..R0, R14_abt..R13_abt, PC,
CPSR, SPSR_abt

0b11011 Undefined R7..R0, LR_und, SP_und, PC,
CPSR, SPSR_und

R12..R0, R14_und..R13_und, PC,
CPSR

0b11111 System R7..R0, LR, SP, PC, CPSR R14..R0, PC, CPSR
Exceptions 3-11
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Table 3.2 Exception Entry/Exit for details). If the exception has been
entered from THUMB state, then the value written into the Link
register is the current PC offset by a value such that the program
resumes from the correct place on return from the exception. This
means that the exception handler need not determine from which
state the exception was entered. For example, in the case of a
Software Interrupt (SWI), MOVS PC, R14_svcwill always return to the
next instruction regardless of whether the SWI was executed in ARM
or THUMB state.

2. Copies the CPSR into the appropriate SPSR

3. Forces the CPSR mode bits to a value which depends on the
exception

4. Forces the PC to fetch the next instruction from the relevant
exception vector

It may also set the interrupt disable flags to prevent otherwise
unmanageable nestings of exceptions.

If the processor is in THUMB state when an exception occurs, it will
automatically switch into ARM state when the PC is loaded with the
exception vector address.

3.9.2 Action on Leaving an Exception

On completion, the exception handler:

1. Moves the Link Register, minus an offset where appropriate, to the
PC. (The offset will vary depending on the type of exception.)

2. Copies the SPSR back to the CPSR

3. Clears the interrupt disable flags, if they were set on entry

Note: An explicit switch back to THUMB state is never needed,
since restoring the CPSR from the SPSR automatically
sets the T bit to the value it held immediately prior to the
exception.
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3.9.3 Exception Entry/Exit Summary

Table 3.2 summarizes the PC value preserved in the relevant R14
register on exception entry, and the recommended instruction for exiting
the exception handler.

3.9.4 Fast Interrupt Request (FIQ)

The FIQ (Fast Interrupt Request) exception is designed to support a data
transfer or channel process, and in ARM state has sufficient private
registers to remove the need for register saving (thus minimizing the
overhead of context switching).

FIQ is externally generated by taking the nFIQ input LOW. This input can
except either synchronous or asynchronous transitions, depending on
the state of the ISYNC input signal. When ISYNC is LOW, nFIQ and
nIRQ are considered asynchronous, and a cycle delay for
synchronization is incurred before the interrupt can affect the processor
flow.

Table 3.2 Exception Entry/Exit

Exception Return Instruction

Previous State
ARMTHUMB
R14_xR14_x Notes

BL MOV PC, R14 PC + 4 PC + 2 1

SWI MOVS PC, R14_svc PC + 4 PC + 2 1

UDEF MOVS PC, R14_und PC + 4 PC + 2 1

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 2

IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4 2

PABT SUBS PC, R14_abt, #4 PC + 4 PC + 4 1

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 8 3

RESET NA – – 4

1. Where PC is the address of the BL/SWI/Undefined Instruction fetch which had the prefetch abort.
2. Where PC is the address of the instruction which did not get executed since the FIQ or IRQ took

priority.
3. Where PC is the address of the Load or Store instruction which generated the data abort.
4. The value saved in R14_svc upon reset is unpredictable.
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Irrespective of whether the exception was entered from ARM or THUMB
state, a FIQ handler should leave the interrupt by executing

SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR’s F flag (but note that this is
not possible from User mode). If the F flag is clear, ARM7TDMI checks
for a LOW level on the output of the FIQ synchronizer at the end of each
instruction.

3.9.5 Interrupt Request (IRQ)

The IRQ (Interrupt Request) exception is a normal interrupt caused by a
LOW level on the nIRQ input. IRQ has a lower priority than FIQ and is
masked out when an FIQ sequence is entered. It may be disabled at any
time by setting the I bit in the CPSR, though this can only be done from
a privileged (nonuser) mode.

Irrespective of whether the exception was entered from ARM or THUMB
state, an IRQ handler should return from the interrupt by executing

SUBS PC,R14_irq,#4

3.9.6 Abort

An abort indicates that the current memory access cannot be completed.
It can be signalled by the external ABORT input. ARM7TDMI checks for
the abort exception during memory access cycles.

There are two types of abort:

Prefetch abort (PABT) occurs during an instruction prefetch.

Data abort (DABT) occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid,
but the exception will not be taken until the instruction reaches the head
of the pipeline. If the instruction is not executed—for example because a
branch occurs while it is in the pipeline—the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

1. Single data transfer instructions (LDR, STR) write back modified base
registers: the Abort handler must be aware of this.
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2. The swap instruction (SWP) is aborted as though it had not been
executed.

3. Block data transfer instructions (LDM, STM) complete. If write back is
set, the base is updated. If the instruction would have
overwritten the base with data (i.e., it has the base in the transfer
list), the overwriting is prevented. All register overwriting is prevented
after an abort is indicated, which means in particular that R15
(always the last register to be transferred) is preserved in an aborted
LDM instruction.

The abort mechanism allows the implementation of a demand paged
virtual memory system. In such a system the processor is allowed to
generate arbitrary addresses. When the data at an address is
unavailable, the Memory Management Unit (MMU) signals an abort. The
abort handler must then work out the cause of the abort, make the
requested data available, and retry the aborted instruction. The
application program needs no knowledge of the amount of memory
available to it, nor is its state in any way affected by the abort.

After fixing the reason for the abort, the handler should execute the
following irrespective of the state (ARM or THUMB):

This restores both the PC and the CPSR, and retries the aborted
instruction.

3.9.7 Software Interrupt (SWI)

The software interrupt instruction (SWI) is used for entering Supervisor
mode, usually to request a particular supervisor function. A SWI handler
should return by executing the following irrespective of the state (ARM or
THUMB):

MOV PC, R14_svc

This restores the PC and CPSR, and returns to the instruction following
the SWI.

SUBS PC,R14_abt,#4 for a prefetch abort
SUBS PC,R14_abt,#8 for a data abort
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3.9.8 Undefined Instruction (UDEF)

When ARM7TDMI comes across an instruction which it cannot handle,
it takes the undefined instruction trap. This mechanism may be used to
extend either the THUMB or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the
following irrespective of the state (ARM or THUMB):

MOVS PC,R14_und

This restores the CPSR and returns to the instruction following the
undefined instruction.

3.9.9 Exception Vectors

Table 3.3 lists the exception vector addresses.

3.9.10 Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system
determines the order in which they are handled:

Highest priority:

1. Reset

2. Data abort

Table 3.3 Exception Vectors

Address  Exception Mode on Entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ
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3. FIQ

4. IRQ

5. Prefetch abort

Lowest priority:

6. Undefined Instruction, Software interrupt.

3.9.10.1 Not All Exceptions Can Occur at Once

Undefined Instruction and Software Interrupt are mutually exclusive,
since they each correspond to particular (nonoverlapping) decodings of
the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled
(i.e., the CPSR’s F flag is clear), ARM7TDMI enters the data abort
handler and then immediately proceeds to the FIQ vector. A normal
return from FIQ will cause the data abort handler to resume execution.
Placing data abort at a higher priority than FIQ is necessary to ensure
that the transfer error does not escape detection. The time for this
exception entry should be added to worst-case FIQ latency calculations.

3.10 Interrupt Latencies

The worst case latency for FIQ, assuming that it is enabled, consists of
the longest time the request can take to pass through the synchronizer
(Tsyncmax if asynchronous), plus the time for the longest instruction to
complete (Tldm, the longest instruction is an LDM which loads all the
registers including the PC), plus the time for the data abort entry (Texc),
plus the time for FIQ entry (Tfiq). At the end of this time ARM7TDMI will
be executing the instruction at 0x1C.

Tsyncmax is three processor cycles, Tldm is 20 cycles, Texc is three
cycles, and Tfiq is two cycles. The total time is therefore 28 processor
cycles. This is just over 1.4 microseconds in a system which uses a
continuous 20 MHz processor clock. The maximum IRQ latency
calculation is similar, but must allow for the fact that FIQ has higher
priority and could delay entry into the IRQ handling routine for an
arbitrary length of time. The minimum latency for FIQ or IRQ consists of
the shortest time the request can take through the synchronizer
(Tsyncmin) plus Tfiq. This is four processor cycles.
Interrupt Latencies 3-17
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3.11 Reset

When the nRESET signal goes LOW, ARM7TDMI abandons the
executing instruction and then continues to fetch instructions from
incrementing word addresses.

When nRESET goes HIGH again, ARM7TDMI:

1. Overwrites R14_svc and SPSR_svc by copying the current values of
the PC and CPSR into them. The value of the saved PC and SPSR
is not defined.

2. Forces M[4:0] to 0b10011 (Supervisor mode), sets the I and F bits
in the CPSR, and clears the CPSR’s T bit.

3. Forces the PC to fetch the next instruction from address 0x00.

4. Execution resumes in ARM state.

3.12 Pipeline Architecture

The ARM7TDMI core implements a three-stage pipeline (Instruction
Fetch, Decode, and Execute) that always executes instructions in the
order received and is fully interlocked in hardware. Figure 3.7 shows the
ARM7TDMI three-stage pipeline.

Figure 3.7 ARM7TDMI Pipeline

The execution of a single ARM7TDMI instruction consists of the following
pipeline stages:

1. Instruction Fetch (IF) – The core fetches the instruction from
memory.

2. Decode (D) – The core decodes the instruction and determines
which registers are needed for this operation. If necessary, the core
decompresses a 16-bit THUMB instruction into a 32-bit ARM
instruction.

D X

Decode ExecuteInstruction Fetch

IF
3-18 Programmer’s Model



ARM.book  Page 19  Wednesday, November 25, 1998  1:11 PM
3. Execute (X) – The core reads from the necessary register bank,
executes all shift and ALU operations, and writes results to the
appropriate register bank.

Pipeline operation is identical for both ARM and THUMB modes of
operation. When in THUMB mode, the core decompresses each THUMB
instruction (in the D stage) to provide the equivalent information that a
decoded ARM instruction would provide. The only pipeline difference
between ARM and THUMB mode is how the core handles the PC
register (R15). The core increments PC by four addresses after each
ARM instruction fetch, or by two addresses for each THUMB instruction
fetch.

Figure 3.8 shows the ARM7TDMI pipeline executing code where all
instructions operate on data already available in the CPU registers.

Figure 3.8 Pipeline Best Case Example

The only bus traffic in Figure 3.8 is from instruction fetches; one memory
access for each instruction executed. In this example, the pipeline is
working as efficiently as possible; there are no wasted slots in the
pipeline and the pipeline is never stalled.

Figure 3.8 is a good example of a smooth and continuous pipeline flow.
Of course, the ARM7TDMI pipeline doesn’t always run so smoothly and
other events can interrupt the pipeline operation. Specifically, there are
four effects that can disrupt the continuous operation of the pipeline:

• Changes to the PC that cause changes in the program flow

• Hardware interrupts that cause changes to the program flow

• Multicycle instructions

• Instructions that require data accesses to memory

IF D  X

IF  D  X

IF  D  X

ADD

ADD

MOV

IF  D  X

IF D  X

AND

ORR
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Changes to PC – The PC (R15) can change due to a direct
modification, a branch operation, or an exception. When such a change
in program flow occurs, the core flushes the pipeline and directs the first
pipeline stage to fetch the instruction pointed to by the new PC value.
Figure 3.9 shows the ARM7TDMI pipeline executing code in ARM mode
when a branch instruction occurs.

Figure 3.9 Pipeline Branch Example

Following the branch (BL) instruction, two instructions are fetched
(prefetched) in the branch shadow. Since the ARM architecture does not
allow for branch delay slots, these two instructions are discarded before
either reaches the Execute stage. After these two discarded instructions,
the pipeline flow returns to normal operation. The third instruction and all
subsequent instructions will fetch, decode, and execute as normal.

Hardware interrupts – When an interrupt activates, it changes the
program flow and alters the pipeline execution. The core completes
current instruction execution, flushes the pipeline, and directs the first
stage in the pipeline to fetch a new instruction from the interrupt
exception vector address. Worst-case interrupt latencies are discussed
in Section 3.10, “Interrupt Latencies.”

Figure 3.10 shows the ARM7TDMI pipeline operation when the flow is
interrupted by an interrupt IRQ.

IF D  X

IF  D

IF

BL

+4

+8

IF  D  X

IF D  X

Next Completed Instruction

+4

IF D  X+8

Linkret Adjust
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Figure 3.10 Pipeline Interrupt Example

In Figure 3.10, the interrupt arrival in cycle 1 (IRQ) causes the core to
drain the pipeline, which discards the two prefetched instructions. R15 is
then set to the exception vector value (0x18 in this example), which
contains a branch instruction to the exception routine. This second
branch triggers a second pipeline drain in cycle 4. An equivalent FIQ
situation could have a lower latency than shown in Figure 3.10, because
the FIQ vector is the last vector (at address 0x1C.) Therefore, the FIQ
exception routine could start directly after the first branch address, rather
than branching again to a different address.

Multicycle instructions – These instructions reach the IF stage of the
pipeline and remain there for multiple clock cycles, causing the remaining
stages of the pipeline to stall. The MUL (multiply) instruction is an
example of an instruction that requires multiple cycles to execute.

Instructions that access data memory – When instructions need to
access data memory, they occupy bus bandwidth, which prevents new
instructions from being fetched from memory. The pipeline stalls while
data memory is accessed and this ultimately leads to wasted execution
slots.

Figure 3.11 shows ARM7TDMI pipeline operation during code execution
that includes a data fetch from memory.

IF D  X

IF  D

IF

ADD

MOV

ADD

IF  D  X

IF D

Branch to Routine (0x18)

+4

IF+8

IF  D  X

IF D

Exception Routine

+4

IF+8

IRQ
1 2 3 4 5 6 7

Linkret Adjust
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Figure 3.11 Pipeline Data Memory Access Example

When the LDRinstruction executes, it causes the pipeline to stall for two
cycles. The core has already fetched the two instructions subsequent to
the LDRand they remain in the pipeline. These two instructions are
stalled but not discarded, as in a branch or interrupt operation. In the first
stall cycle (cycle 4), the core reads data for the LDRfrom memory. In the
second stall cycle (cycle 5), the core writes the data to the internal
register file. If the example contained an STR(store register) instruction
rather than LDR, the pipeline would stall for a single cycle for a write to
memory. STRdoes not require a register write back.

So far, the pipeline operation examples have assumed that nWAIT is
never asserted. If the core asserts nWAIT in any clock cycle, this stops
the core clock, so that all stages of the pipeline (and everything else in
the core) stop while nWAIT remains asserted. nWAIT clearly has an
important effect on execution time and interrupt latency in any real
system.

IF D  X

IF  D  X

IF  D  X

ADD

ADD

LDR

IF DMOV

1 2 3 4 5 6

X

Data Writebk

IFADD D
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Chapter 4
ARM Instruction Set
Summary
This chapter proviides a summary of the ARM instruction set. It contains
the following sections:

• Section 4.1, “Instruction Set Summary,” page 4-1

• Section 4.2, “Format Summary,” page 4-3

• Section 4.3, “Instruction Condition Field,” page 4-4

• Section 4.4, “Instruction Set Examples,” page 4-5

For detailed information on the ARM instruction set, see the ARM
Architectural Reference Manual.

4.1 Instruction Set Summary

The ARM instruction set is summarized below.

Table 4.1 ARM Instruction Set

Mnemonic Instruction Action

ADC Add with carry Rd : = Rn + Op2 + Carry

ADD Add Rd : = Rn + Op2

AND And Rd : = Rn AND Op2

B Branch R15 : = address

BIC Bit clear Rd : = Rn AND NOT Op2

BL Branch with link R14 : = R15, R15 := address

(Sheet 1 of 3)
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BX Branch and exchange R15 : = Rn,
T bit : = Rn[0]

CDP Coprocessor data processing (Coprocessor-specific)

CMN Compare negative CPSR flags : = Rn + Op2

CMP Compare CPSR flags : = Rn - Op2

EOR Exclusive OR Rd : = (Rn AND NOT Op2)
OR (op2 AND NOT Rn)

LDC Load coprocessor from memory Coprocessor load

LDM Load multiple registers Stack manipulation (Pop)

LDR Load register from memory Rd : = (address)

MCR Move CPU register to coprocessor register cRn : = rRn {<op>cRm}

MLA Multiply accumulate Rd : = (Rm * Rs) + Rn

MOV Move register or constant Rd : = Op2

MRC Move from coprocessor register to CPU register Rn : = cRn {<op>cRm}

MRS Move PSR status/flags to register Rn : = PSR

MSR Move register to PSR status/flags PSR : = Rm

MUL Multiply Rd : = Rm * Rs

MVN Move negative register Rd : = 0xFFFFFFFF EOR Op2

ORR Or Rd : = Rn OR Op2

RSB Reverse subtract Rd : = Op2 - Rn

RSC Reverse subtract with carry Rd : = Op2 - Rn - 1 + Carry

SBC Subtract with carry Rd : = Rn - Op2 - 1 + Carry

STC Store coprocessor register to memory address : = CRn

STM Store multiple Stack manipulation (Push)

Table 4.1 ARM Instruction Set (Cont.)

Mnemonic Instruction Action

(Sheet 2 of 3)
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4.2 Format Summary

The ARM instruction set formats are shown below.

Figure 4.1 ARM Instruction Set Formats

STR Store register to memory <address> : = Rd

SUB Subtract Rd : = Rn - Op2

SWI Software interrupt OS call

SWP Swap register with memory Rd : = [Rn], [Rn] : = Rm

TEQ Test bit wise equality CPSR flags : = Rn EOR Op2

TST Test bits CPSR flags : = Rn AND Op2

Table 4.1 ARM Instruction Set (Cont.)

Mnemonic Instruction Action

(Sheet 3 of 3)
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Cond 0 0 1 Opcode S RN RD Operand 2 Data Processing/PSR
Transfer

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Multiply

Cond 0 0 0 0 1 U A S RdHigh RdLow Rn 1 0 0 1 Rm Multiply Long

Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm Single Data Swap

Cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn Branch and Exchange

Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm Halfword Data Transfer:
Register Offset

Cond 0 0 0 P U 1 W L Rn Rd Offset 1 S H 1 Offset Halfword Data Transfer:
Immediate Offset

Cond 0 1 I P U B W L Rn Rd Offset Single Data Transfer

Cond 0 1 1 1 Undefined

Cond 1 0 0 P U S W L Rn Register List Block Data Transfer

Cond 1 0 1 L Offset Branch

Cond 1 1 0 P U N W L Rn CRd CP# Offset Coprocessor Data
Transfer
Format Summary 4-3
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Note: Some instruction codes are not defined but do not cause
the Undefined instruction trap to be taken, for instance a
Multiply instruction with bit 6 changed to a 1. These
instructions should not be used, as their action may change
in future ARM implementations.

4.3 Instruction Condition Field

In ARM state, all instructions are conditionally executed according to the
state of the CPSR condition codes and the instruction’s condition field.
This field (bits 31:28) determines the circumstances under which an
instruction is to be executed. If the state of the C, N, Z and V flags fulfils
the conditions encoded by the field, the instruction is executed, otherwise
it is ignored.

There are sixteen possible conditions, each represented by a two
character suffix that can be appended to the instruction’s mnemonic. For
example, a Branch (B in assembly language) becomes BEQfor ‘Branch
if Equal’, which means the Branch will only be taken if the Z flag is set.

In practice, fifteen different conditions may be used: these are listed in
Table 4.2. The sixteenth (0b1111) is reserved, and must not be used.

Cond 1 1 1 0 CP Opc CRn CRd CP# CP 0 CRm Coprocessor Data
Operation

Cond 1 1 1 0 CP Opc L CRn Rd CP# CP 1 CRm Coprocessor Register
Transfer

Cond 1 1 1 1 Ignored by processor Software Interrupt

3
1

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 0
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In the absence of a suffix, the condition field of most instructions is set
to ‘Always’ (suffix AL). This means the instruction will always be executed
regardless of the CPSR condition codes.

4.4 Instruction Set Examples

The following examples show ways in which the basic core instructions
can combine to give efficient code. None of these methods saves a great
deal of execution time (although they may save some), mostly they just
save code.

Table 4.2 Condition Code Summary

Code Suffix Flags Meaning

0b0000 EQ Z Set equal

0b0001 NE Z Clear not equal

0b0010 CS C Set unsigned higher or same

0b0011 CC C Clear unsigned lower

0b0100 MI N Set negative

0b0101 PL N Clear positive or zero

0b0110 VS V Set overflow

0b0111 VC V Clear no overflow

0b1000 HI C Set and Z Clear unsigned higher

0b1001 LS C Clear or Z Set unsigned lower or same

0b1010 GE N Equals V greater or equal

0b1011 LT N not Equal to V less than

0b1100 GT Z Clear AND (N Equals V) greater than

0b1101 LE Z Set OR (N not Equal to V) less than or equal

0b1110 AL (ignored) always
Instruction Set Examples 4-5
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4.4.1 Using the Conditional Instructions

4.4.1.1 Using Conditionals for Logical OR

CMP Rn,#p ; If Rn = p OR Rm = q THEN GOTO
; Label.

BEQ Label
CMP Rm,#q
BEQ Label

This can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; If condition not satisfied try

; other test.
BEQ Label

4.4.1.2 Absolute Value

TEQ Rn,#0 ; Test sign
RSBMI Rn,Rn,#0 ; and 2's complement if necessary.

4.4.1.3 Multiplication by 4, 5 or 6 (Run Time)

MOV Rc,Ra,LSL#2; Multiply by 4,
CMP Rb,#5 ; test value,
ADDCS Rc,Rc,Ra ; complete multiply by 5,
ADDHI Rc,Rc,Ra ; complete multiply by 6.

4.4.1.4 Combining Discrete and Range Tests

TEQ Rc,#127 ; Discrete test,
CMPNE Rc,#” ”-1 ; range test
MOVLS Rc,#”.” ; IF   Rc<=” ” OR Rc=ASCII(127)

; THEN Rc:=”.”

4.4.1.5 Division and Remainder

A short general purpose divide routine follows.

; Enter with numbers
; in Ra and Rb.
;

MOV Rcnt,#1 ; Bit to control the
; division.

Div1 CMP Rb,#0x80000000 ; Move Rb until
; greater than Ra.
4-6 ARM Instruction Set Summary
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CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0

Div2 CMP Ra,Rb ; Test for possible
; subtraction.

SUBCS Ra,Ra,Rb ; Subtract if ok,
ADDCS Rc,Rc,Rcnt ; put relevant bit

; into result
MOVS Rcnt,Rcnt,LSR#1 ; shift control bit
MOVNE Rb,Rb,LSR#1 ; halve unless

; finished.
BNE Div2

;
; Divide result in Rc,
; remainder in Ra.

4.4.1.6 Overflow Detection in the ARM7TDMI

Overflow in unsigned multiply with a 32-bit result

UMULL Rd,Rt,Rm,Rn ;3 to 6 cycles
TEQ Rt,#0 ;+ 1 cycle and a register
BNE overflow

Overflow in signed multiply with a 32-bit result

SMULL Rd,Rt,Rm,Rn ;3 to 6 cycles
TEQ Rt,Rd ASR#31 ;+ 1 cycle and a register
BNE overflow

Overflow in unsigned multiply accumulate with a 32-bit result

UMLAL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,#0 ;+ 1 cycle and a register
BNE overflow

Overflow in signed multiply accumulate with a 32-bit result

SMLAL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,Rd, ASR#31 ;+ 1 cycle and a register
BNE overflow

Overflow in unsigned multiply accumulate with a 64-bit result

UMULL Rl,Rh,Rm,Rn ;3 to 6 cycles
ADDS Rl,Rl,Ra1 ;lower accumulate
ADC Rh,Rh,Ra2 ;upper accumulate
BCS overflow ;1 cycle and 2 registers
Instruction Set Examples 4-7
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Overflow in signed multiply accumulate with a 64-bit result

SMULL Rl,Rh,Rm,Rn ;3 to 6 cycles
ADDS Rl,Rl,Ra1 ;lower accumulate
ADC Rh,Rh,Ra2 ;upper accumulate
BVS overflow ;1 cycle and 2 registers

Note: Overflow checking is not applicable to unsigned and signed
multiplies with a 64-bit result, since overflow does not occur
in such calculations.

4.4.2 Pseudo-Random Binary Sequence Generator

It is often necessary to generate (pseudo-) random numbers and the
most efficient algorithms are based on shift generators with exclusive-OR
feedback rather like a cyclic redundancy check generator. Unfortunately
the sequence of a 32-bit generator needs more than one feedback tap
to be maximal length (i.e. 2^32 − 1 cycles before repetition), so this
example uses a 33-bit register with taps at bits 33 and 20. The basic
algorithm is newbit: = bit 33 EOR bit 20, shift left the 33-bit number and
put in newbit at the bottom; this operation is performed for all the new
bits needed (i.e. 32 bits). The entire operation can be done in 5 S cycles:

; Enter with seed in Ra (32 bits),
  Rb (1 bit in Rb lsb), uses Rc.
;

TST Rb,Rb,LSR#1 ; Top bit into carry
MOVS Rc,Ra,RRX ; 33-bit rotate right
ADC Rb,Rb,Rb ; carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)
EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!)

; new seed in Ra, Rb as before

4.4.3 Multiplication by Constant Using the Barrel Shifter

• Multiplication by 2^n (1, 2, 4, 8, 16, 32..)

MOV Ra, Rb, LSL #n

• Multiplication by 2^n + 1 (3, 5, 9, 17..)

ADD Ra,Ra,Ra,LSL #n

• Multiplication by 2^n − 1 (3, 7, 15..)

RSB Ra,Ra,Ra,LSL #n
4-8 ARM Instruction Set Summary
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• Multiplication by 6

ADD Ra,Ra,Ra,LSL #1; multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

• Multiply by 10 and Add in Extra Number

ADD Ra,Ra,Ra,LSL#2; multiply by 5
ADD Ra,Rc,Ra,LSL#1; multiply by 2 and add in

next digit

• General Recursive Method for Rb : = Ra * C, C a Constant:

– If C even, say C = 2^n * D, D odd:

D=1: MOV   Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n

– If C MOD 4 = 1, say C = 2^n * D + 1, D odd, n > 1:

D=1: ADD   Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n

– If C MOD 4 = 3, say C = 2^n * D − 1, D odd, n > 1:

D=1: RSB    Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. For example, a multiply by 45 is done
by:

RSB Rb,Ra,Ra,LSL#2 ; multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; multiply by 4 * 3 − 1 = 11
ADD Rb,Ra,Rb,LSL# 2 ; multiply by 4 * 11 + 1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; multiply by 5 * 9 = 45
Instruction Set Examples 4-9
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4.4.4 Loading a Word from an Unknown Alignment
; enter with address in Ra (32 bits)
; uses Rb, Rc; result in Rd.
; Note d must be less than c e.g. 0,1
;

BIC Rb,Ra,#3 ; get word aligned address
LDMIA Rb,{Rd,Rc} ; get 64 bits containing answer
AND Rb,Ra,#3 ; correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; produce bottom of result word

; (if not aligned)
RSBNE Rb,Rb,#32 ; get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb ; combine two halves to get result
4-10 ARM Instruction Set Summary
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Chapter 5
THUMB Instruction Set
Summary
This chapter describes the THUMB instruction set. It contains the
following sections:

• Section 5.1, “Instruction Set Summary,” page 5-1

• Section 5.2, “Format Summary,” page 5-3

• Section 5.3, “Instruction Set Examples,” page 5-4

For detailed information on the THUMB instruction set, see the ARM
Architectural Reference Manual.

5.1 Instruction Set Summary

The following table summarizes the THUMB instruction set.

Table 5.1 THUMB Instruction Set

Mnemonic Instruction

Equivalent
ARM
Instructions

Low
Register
Operand

High
Register
Operand

Condition
Codes
Set

ADC Add with carry ADC ✔ ✔

ADD Add ADD ✔ ✔ ✔1

AND Logical and AND ✔ ✔

ASR Arithmetic shift right MOV ✔ ✔

B Unconditional branch B ✔

Bxx Conditional branch B ✔

(Sheet 1 of 3)
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BIC Bit clear BIC ✔ ✔

BL Branch and link BL

BX Branch and exchange BX ✔ ✔

CMN Compare negative CMN ✔ ✔

CMP Compare CMP ✔ ✔ ✔

EOR Exclusive or EOR ✔ ✔

LDMIA Load multiple LDM ✔

LDR Load word LDR ✔

LDRB Load byte LDR ✔

LDRH Load halfword LDR ✔

LDRSB Load register signed byte LDR ✔

LDRSH Load register halfword LDR ✔

LSL Logical shift left MOV ✔ ✔

LSR Logical shift right MOV ✔ ✔

MOV Move register MOV ✔ ✔ ✔2

MUL Multiply MUL ✔ ✔

MVN Move negative register MVN ✔ ✔

NEG Negate RSB ✔ ✔

ORR Logical or ORR ✔ ✔

POP Pop registers LDM ✔

PUSH Push registers LDM ✔

ROR Rotate right MOV ✔ ✔

SBC Subtract with carry SBC ✔ ✔

Table 5.1 THUMB Instruction Set (Cont.)

Mnemonic Instruction

Equivalent
ARM
Instructions

Low
Register
Operand

High
Register
Operand

Condition
Codes
Set

(Sheet 2 of 3)
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5.1.1 Instruction Cycle Time

All THUMB instructions have an equivalent ARM instruction as shown in
the table above. The instruction cycle times for the THUMB instructions
are identical to that of the equivalent ARM instruction. For more
information on instruction cycle time, refer to Chapter 10, “Instruction
Cycle Operations.”

5.2 Format Summary

The THUMB instruction set formats are shown in the following figure.

STMIA Store multiple STM ✔

STR Store word STR ✔

STRB Store byte STR ✔

STRH Store halfword STR ✔

SUB Subtract SUB ✔ ✔

SWI Software interrupt SWI

TST Test bits TST ✔ ✔

1. The condition codes are unaffected by the format 5, 12 and 13 versions of this instruction.
2. The condition codes are unaffected by the format 5 version of this instruction.

Table 5.1 THUMB Instruction Set (Cont.)

Mnemonic Instruction

Equivalent
ARM
Instructions

Low
Register
Operand

High
Register
Operand

Condition
Codes
Set

(Sheet 3 of 3)
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Figure 5.1 THUMB Instruction Set Formats

5.3 Instruction Set Examples

The following examples show ways in which the THUMB instructions may
be used to generate small and efficient code. Each example also shows
the ARM equivalent so these may be compared.

5.3.1 Multiplication by a Constant Using Shifts and Adds

The following shows code to multiply by various constants using one, two
or three Thumb instructions along side the ARM equivalents. For other
constants it is generally better to use the built-in MULinstruction rather
than using a sequence of four or more instructions.

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 0 0 0 Op Offset5 Rs Rd Move Shifted Register

2 0 0 0 1 1 1 Op Rn/offset3 RS Rd Add/Subtract

3 0 0 1 Op Rd Offset8 Move/Compare/Add/Subtract/Immediate

4 0 1 0 0 0 0 Op Rs Rd ALU Operations

5 0 1 0 0 0 1 Op H1 H2 Rs/Hs Rd/Hd Hi Register Operations/Branch Exchange

6 0 1 0 0 1 Rd Word8 PC Relative Load

7 0 1 0 1 L S 0 Ro Rb Rd Load/Store with Register Offset

8 0 1 0 1 H S 1 Ro Rb Rd Load/Store Sign-Extended Byte/Halfword

9 0 1 1 B L Offset5 Rb Rd Load/Store with Immediate Offset

10 1 0 0 0 L Offset5 Rb Rd Load/Store Halfword

11 1 0 0 1 L Rd Work8 SP-Relative Load/Store

12 1 0 1 0 SP Rd Work8 Load Address

13 1 0 1 1 0 0 0 0 S SWord7 Add Offset to Stack Pointer

14 1 0 1 1 L 1 0 R Rlist Push/Pop Registers

15 1 1 0 0 L Rb Rlist Multiple Load/Store

16 1 1 0 1 Cond Soffset8 Conditional Branch

17 1 1 0 1 1 1 1 1 Value8 Software Interrupt

18 1 1 1 0 0 Offset11 Unconditional Branch

19 1 1 1 1 H Offset Long Branch with Link
5-4 THUMB Instruction Set Summary
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THUMB ARM

Multiplication by 2^n (1, 2, 4, 8, ...)

LSL Ra, Rb, LSL #n MOV Ra, Rb, LSL #n

Multiplication by 2^n + 1 (3, 5, 9, 17, ...)

LSL Rt, Rb, #n ADD Ra, Rb, Rb, LSL #n
ADD Ra, Rt, Rb

Multiplication by 2^n − 1 (3, 7, 15, ...)

LSL Rt, Rb, #n RSB Ra, Rb, Rb, LSL #n
SUB Ra, Rt, Rb

Multiplication by − 2^n (−2, −4, −8, ...)

LSL Ra, Rb, #n MOV Ra, Rb, LSL #n
MVN Ra, Ra RSB Ra, Ra, #0

Multiplication by − 2^n − 1 (−3, −7, −15, ...)

LSL Rt, Rb, #n SUB Ra, Rb, Rb, LSL #n
SUB Ra, Rb, Rt

Multiplication by any C = {2^n + 1, 2^n − 1, − 2^n or − 2^n −1} * 2^n

Effectively this is any of the multiplications in 2 to 5 followed by a final
shift.

This allows the following additional constants to be multiplied.

6, 10, 12, 14, 18, 20, 24, 28, 30, 34, 36, 40, 48, 56,
60, 62 .....

(2..5) (2..5)
LSL Ra, Ra, #n MOV Ra, Ra, LSL #n

5.3.2 General Purpose Signed Divide

This example shows a general purpose signed divide and remainder
routine in both THUMB and ARM code.
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5.3.2.1 Thumb Code

signed_divide
; Signed divide of R1 by R0: returns quotient in R0,
; remainder in R1

; Get abs value of R0 into R3
ASR R2, R0, #31 ; Get 0 or -1 in R2 depending

; on sign of R0
EOR R0, R2 ; EOR with -1 (0xFFFFFFFF) if

; negative
SUB R3, R0, R2 ; and ADD 1 (SUB -1) to get

; abs value
; SUB always sets flag so go & report division by 0 if
; necessary
; BEQ divide_by_zero

; Get abs value of R1 by xoring with 0xFFFFFFFF and adding 1
; if negative

ASR R0, R1, #31 ; Get 0 or -1 in R3 depending
; on sign of R1

EOR R1, R0 ; EOR with -1 (0xFFFFFFFF) if
; negative

SUB R1, R0 ; and ADD 1 (SUB -1) to get
; abs value

; Save signs (0 or −1 in R0 & R2) for later use in
; determining sign of quotient & remainder.

PUSH  {R0, R2}

; Justification, shift 1 bit at a time until divisor (R0
; value) is just <= than dividend (R1 value). To do this
; shift dividend right by 1 and stop as soon as shifted
; value becomes >.

LSR R0, R1, #1
MOV R2, R3
B %FT0

just_lLSL R2, #1
0 CMP R2, R0

BLS just_l

MOV R0, #0 ; Set accumulator to 0
B %FT0 ; Branch into division loop

div_l LSR R2, #1
0 CMP R1, R2 ; Test subtract

BCC %FT0
SUB R1, R2 ; If successful do a real
5-6 THUMB Instruction Set Summary
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; subtract
0 ADC R0, R0 ; Shift result and add 1 if

; subtract succeeded

CMP R2, R3 ; Terminate when R2 == R3 (we
; have just

BNE div_l ; tested subtracting the
; 'ones' value)

; Now fixup the signs of the quotient (R0) and
; remainder (R1)

POP {R2, R3} ; Get dividend/divisor signs
; back

EOR R3, R2 ; Result sign
EOR R0, R3 ; Negate if result sign = −1
SUB R0, R3

EOR R1, R2 ; Negate remainder if dividend
; sign = −1

SUB R1, R2

MOV pc, lr

5.3.2.2 ARM Code

signed_divide
; effectively zero a4 as top bit will be shifted out later

ANDS    a4, a1, #&80000000
RSBMI   a1, a1, #0
EORS    ip, a4, a2, ASR #32

; ip bit 31 = sign of result
; ip bit 30 = sign of a2

RSBCS   a2, a2, #0

; central part is identical code to udiv
; (without MOV a4, #0 which comes for free as part of signed
; entry sequence)

MOVS    a3, a1
BEQ     divide_by_zero

just_l
; justification stage shifts 1 bit at a time

CMP     a3, a2, LSR #1
MOVLS   a3, a3, LSL #1

; NB: LSL #1 is always OK if LS succeeds
BLO     s_loop
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div_l
CMP     a2, a3
ADC     a4, a4, a4
SUBCS   a2, a2, a3

TEQ     a3, a1
MOVNE   a3, a3, LSR #1
BNE     s_loop2
MOV     a1, a4

MOVS    ip, ip, ASL #1
RSBCS   a1, a1, #0
RSBMI   a2, a2, #0

MOV pc, lr

5.3.3 Division by a Constant

Division by a constant can often be performed by a short fixed sequence
of shifts, adds and subtracts. For an explanation of the algorithm see The
ARM Cookbook (ARM DUYI-0005B), section entitled “Division by a
constant.”

Here is an example of a divide by 10 routine based on the algorithm in
the ARM Cookbook in both THUMB and ARM code.

5.3.3.1 THUMB Code

udiv10
; takes argument in a1
; returns quotient in a1, remainder in a2

MOV     a2, a1
LSR     a3, a1, #2
SUB     a1, a3
LSR     a3, a1, #4
ADD     a1, a3
LSR     a3, a1, #8
ADD     a1, a3
LSR     a3, a1, #16
ADD     a1, a3
LSR     a1, #3
ASL     a3, a1, #2
ADD     a3, a1
ASL     a3, #1
SUB     a2, a3
CMP     a2, #10
BLT     %FT0
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ADD     a1, #1
SUB     a2, #10

0
MOV     pc, lr

5.3.3.2 ARM Code

udiv10
; takes argument in a1
; returns quotient in a1, remainder in a2

SUB     a2, a1, #10
SUB     a1, a1, a1, lsr #2
ADD     a1, a1, a1, lsr #4
ADD     a1, a1, a1, lsr #8
ADD     a1, a1, a1, lsr #16
MOV     a1, a1, lsr #3
ADD     a3, a1, a1, asl #2
SUBS    a2, a2, a3, asl #1
ADDPL   a1, a1, #1
ADDMI   a2, a2, #10
MOV     pc, lr
Instruction Set Examples 5-9
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Chapter 6
Memory Interface
This chapter describes the ARM7TDMI memory interface. It contains the
following sections:

• Section 6.1, “Overview,” page 6-1

• Section 6.2, “Cycle Types,” page 6-2

• Section 6.3, “Address Timing,” page 6-4

• Section 6.4, “Data Transfer Size,” page 6-7

• Section 6.5, “Instruction Fetch,” page 6-8

• Section 6.6, “Memory Management,” page 6-10

• Section 6.7, “Locked Operations,” page 6-10

• Section 6.8, “Stretching Access Times,” page 6-11

• Section 6.9, “ARM7TDMI Data Bus,” page 6-11

• Section 6.10, “External Data Bus,” page 6-13

6.1 Overview

ARM7TDMI’s memory interface consists of the following basic elements:

• 32-bit address bus

This specifies to memory the location to be used for the transfer.

• 32-bit data bus

Instructions and data are transferred across this bus. Data may be
word, halfword, or byte wide in size.

• A bidirectional data bus, D[31:0], and separate unidirectional data
buses, DIN[31:0] and DOUT[31:0].
Book Title 6-1
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Most of the text in this chapter describes the bus behavior assuming
that the bidirectional bus is in use. However, the behavior applies
equally to the unidirectional buses.

• Control signals

These specify, for example, the size of the data to be transferred, and
the direction of the transfer together with providing privileged
information.

This collection of signals allow the core to be simply interfaced to DRAM,
SRAM and ROM. To fully exploit page mode access to DRAM,
information is provided on whether or not the memory accesses are
sequential. In general, interfacing to static memories is much simpler
than interfacing to dynamic memory.

6.2 Cycle Types

All memory transfer cycles can be placed in one of four categories:

1. Nonsequential cycle. The core requests a transfer to or from an
address which is unrelated to the address used in the preceding
cycle.

2. Sequential cycle. The core requests a transfer to or from an address
which is either the same as the address in the preceding cycle, or is
one word or halfword after the preceding address.

3. Internal cycle. The core does not require a transfer, as it is
performing an internal function and no useful prefetching can be
performed at the same time.

4. Coprocessor register transfer. The core wishes to use the data bus
to communicate with a coprocessor, but does not require any action
by the memory system.

These four classes are distinguishable to the memory system by
inspection of the nMREQ and SEQ control lines, see Table 6.1. These
control lines are generated during phase 1 of the cycle before the cycle
whose characteristics they forecast, and this pipelining of the control
information gives the memory system sufficient time to decide whether
or not it can use a page mode access.
6-2 Memory Interface
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Figure 6.1 shows the pipelining of the control signals, and suggests how
the DRAM address strobes (nRAS and nCAS) might be timed to use
page mode for S-cycles. Note that the N-cycle is longer than the other
cycles. This is to allow for the DRAM precharge and row access time,
and is not a core requirement.

Figure 6.1 ARM Memory Cycle Timing

When an S-cycle follows an N-cycle, the address will always be one word
or halfword greater than the address used in the N-cycle. This address
(marked “a” in the above diagram) should be checked to ensure that it is
not the last in the DRAM page before the memory system commits to
the S-cycle. If it is at the page end, the S-cycle cannot be performed in
page mode and the memory system will have to perform a full access.

Table 6.1 Memory Cycle Types

nMREQ SEQ Cycle type

0 0 Nonsequential (N-cycle)

0 1 Sequential (S-cycle)

1 0 Internal (I-cycle)

1 1 Coprocessor register transfer (C-cycle)

MCLK

A[31:0]

nMREQ

SEQ

nCAS

I-cycleS-cycle C-cycleN-cycle

nRAS

D[31:0]

a a + 4 a + 8
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The processor clock must be stretched to match the full access. When
an S-cycle follows an I-cycle, the address will be the same as that used
in the I-cycle. This fact may be used to start the DRAM access during
the preceding cycle, which enables the S-cycle to run at page mode
speed while performing a full DRAM access. This is shown in Figure 6.2.

Figure 6.2 Memory Cycle Optimization
.

6.3 Address Timing

ARM7TDMI’s address bus can operate in one of two configurations
— pipelined or depipelined—this is controlled by the APE input signal.
These configurations make it easy to design both SRAM and DRAM
based systems with the ARM7TDMI core.

It is a requirement of SRAMs and ROMs that the address be held stable
throughout the memory cycle. In a system containing SRAM and ROM
only, APE may be tied permanently LOW, producing the desired address
timing. This is shown in Figure 6.3.

Note: APE effects the timing of the address bus A[31:0], plus
nRW, MAS[1:0], LOCK, nOPC and nTRANS.

MCLK

A[31:0]

nMREQ

SEQ

nCAS

I-cycle S-cycle

nRAS

D[31:0]
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Figure 6.3 ARM7TDMI Depipelined Addresses

In a DRAM based system, it is desirable to obtain the address from the
core as early as possible. When APE is HIGH, the core's address
becomes valid in the MCLK HIGH phase before the memory cycle to
which it refers. This timing allows longer for address decoding and the
generation of DRAM control signals. Figure 6.4 shows the effect on the
timing when APE is HIGH.

Figure 6.4 ARM7TDMI Pipelined Addresses

Many systems will contain a mixture of DRAM and SRAM/ROM. To cater
to the different address timing requirements, APE may be safely changed
during the LOW phase of MCLK. Typically, APE would be held at one
level during a burst of sequential accesses to one type of memory. When
a nonsequential access occurs, the timing of most systems enforces a
wait state to allow for address decoding. As a result of the address
decode, APE can be driven to the correct value for the particular bank
of memory being accessed. The value of APE can be held until the
memory control signals denote another nonsequential access.

MCLK

APE

nMREQ
SEQ

A[31:0]

D[31:0]

MCLK

APE

nMREQ
SEQ

A[31:0]

D[31:0]
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By way of an example, Figure 6.5, shows a combination of accesses to
a mixed DRAM/SRAM system. Here, the SRAM has zero wait states,
and the DRAM has a 2:1 N-cycle/S-cycle ratio. A single wait state is
inserted for address decode when a nonsequential access occurs.
Typical, externally generated DRAM control signals are also shown.

Figure 6.5 Typical System Timing

Previous ARM processors included the ALE signal, and this is retained
for backwards compatibility. This signal also allows the address timing to
be modified to achieve the same results as APE, but in an asynchronous
manner. To obtain clean MCLK LOW timing of the address bus by this
mechanism, ALE must be driven HIGH with the falling edge of MCLK,
and LOW with the rising edge of MCLK. ALE can simply be the inverse
of MCLK but the delay from MCLK to ALE must be carefully controlled
so that the Tald timing constraint is achieved. Figure 6.6 shows how ALE
can be used to achieve SRAM compatible address timing. Refer to
CW001007 ARM7TDMI Microprocessor Core Datasheet for details of the
exact timing constraints.

MCLK

nMREQ

SEQ

A[31:0]

nRW

nWAIT

APE

D[31:0]

DBE

SRAM Cycles Decode DRAM Cycles Decode SRAM Cycles

NN

A A + 4 A + 8 B B + 4 B + 8 C C + 4 C + 8

nRAS

nCAS
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Figure 6.6 SRAM Compatible Address Timing

Note: If ALE is to be used to change address timing, then APE
must be tied HIGH. Similarly, if APE is to be used, ALE
must be tied HIGH.

6.4 Data Transfer Size

In an ARM7TDMI core system, words, halfwords or bytes may be
transferred between the processor and the memory. The size of the
transaction taking place is determined by the MAS[1:0] pins. These are
encoded as follows:

MAS[1:0] 00 Byte
01 Halfword
10 Word
11 Reserved

The processor always produces a byte address, but instructions are
either words (4 bytes) or halfwords (2 bytes), and data can be any size.
Note that when word instructions are fetched from memory, A[1:0] are
undefined and when halfword instructions are fetched, A[0] is undefined.
The MAS[1:0] outputs share the same timing as the address bus and
thus can be modified by the use of ALE and APE as described in
Section 6.3, “Address Timing.”

When a data read of byte or halfword size is performed (e.g., LDRB), the
memory system may safely ignore the fact that the request is for a
subword sized quantity and present the whole word. The core will always

MCLK

APE

nMREQ
SEQ

A[31:0]

D[31:0]

ALE
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correctly extract the addressed byte or halfword from the data. The
memory system may also choose just to supply the addressed byte or
halfword. This may be desirable in order to save power or to simplify the
decode logic.

When a byte or halfword write occurs (e.g., STRH), the core will broadcast
the byte or halfword across the whole of the bus. The memory system
must then decode A[1:0] to enable writing only to the addressed byte or
halfword.

One way of implementing the byte decode in a DRAM system is to
separate the 32-bit wide block of DRAM into four byte wide banks, and
generate the column address strobes independently as shown in
Figure 6.7.

When the processor is configured for Little Endian operation, byte 0 of
the memory system should be connected to data lines 7 through 0
(D[7:0]) and strobed by nCAS0. nCAS1 drives the bank connected to
data lines 15 though 8, and so on. This has the added advantage of
reducing the load on each column strobe driver, which improves the
precision of this time-critical signal.

In the Big Endian case, byte 0 of the memory system should be
connected to data lines 31 through 24.

6.5 Instruction Fetch

ARM7TDMI will perform 32- or 16-bit instruction fetches depending on
whether the processor is in ARM or THUMB state. The processor state
may be determined externally by the value of the TBIT signal. When this
is LOW, the processor is in ARM state and 32-bit instructions are fetched.
When TBIT is HIGH, the processor is in THUMB state and 16-bit
instructions are fetched. The size of the data being fetched is also
indicated on the MAS[1:0] bits, as described in Section 6.4, “Data
Transfer Size”.

When the processor is in ARM state, 32-bit instructions are fetched on
D[31:0]. When the processor is in THUMB state, 16-bit instructions are
fetched from either the upper, D[31:16], or the lower D[15:0] half of the
bus. This is determined by the endian configuration of the memory
6-8 Memory Interface
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system, as configured by the BIGEND input, and the state of A[1].
Table 6.2 shows which half of the data bus is sampled in the different
configurations.

When a 16-bit instruction is fetched, the core ignores the unused half of
the data bus.

Table 6.2 describes instructions fetched from the bidirectional data bus
(i.e. BUSEN is LOW). When the unidirectional data buses are in use
(i.e. BUSEN is HIGH), data will be fetched from the corresponding half
of the DIN[31:0] bus.

Figure 6.7 Decoding Byte Accesses to Memory

Table 6.2 Endian Configuration Effect on Instruction Position

Little Endian
BIGEND = 0

Big Endian
BIGEND = 1

A[1] = 0 D[15:0] D[31:16]

A[1] = 1 D[31:16] D[15:0]

A0 A1 MAS0 MAS1 MAS0 MAS1 MCLK CAS

G

D Q

Quad
Latch nCAS3

nCAS2

nCAS1

nCAS0
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6.6 Memory Management

The core address bus may be processed by an address translation unit
before being presented to the memory, and the core is capable of
running a virtual memory system. The ABORT input to the processor
may be used by the memory manager to inform the core of page faults.
Various other signals enable different page protection levels to be
supported:

• nRW can be used by the memory manager to protect pages from
being written to.

• nTRANS indicates whether the processor is in user or a privileged
mode, and may be used to protect system pages from the user, or
to support completely separate mappings for the system and the
user.

Address translation will normally only be necessary on an N-cycle, and
this fact may be exploited to reduce power consumption in the memory
manager and avoid the translation delay at other times. The times when
translation is necessary can be deduced by keeping track of the cycle
types that the processor uses.

6.7 Locked Operations

The ARM instruction set includes a data swap (SWP) instruction that
allows the contents of a memory location to be swapped with the
contents of a processor register. This instruction is implemented as an
uninterruptable pair of accesses; the first access reads the contents of
the memory, and the second writes the register data to the memory.
These accesses must be treated as a contiguous operation by the
memory controller to prevent another device from changing the affected
memory location before the swap is completed. The core drives the
LOCK signal HIGH for the duration of the swap operation to warn the
memory controller not to give the memory to another device.
6-10 Memory Interface



ARM.book  Page 11  Wednesday, November 25, 1998  1:11 PM
6.8 Stretching Access Times

All memory timing is defined by MCLK, and long access times can be
accommodated by stretching this clock. It is usual to stretch the LOW
period of MCLK, as this allows the memory manager to abort the
operation if the access is eventually unsuccessful.

Either MCLK can be stretched before it is applied to the core, or the
nWAIT input can be used together with a free-running MCLK. Taking
nWAIT LOW has the same effect as stretching the LOW period of MCLK,
and nWAIT must only change when MCLK is LOW.

The core does not contain any dynamic logic which relies upon regular
clocking to maintain its internal state. Therefore there is no limit upon the
maximum period for which MCLK may be stretched, or nWAIT held LOW.

6.9 ARM7TDMI Data Bus

To ease the connection of the core to subword sized memory systems,
input data and instructions may be latched on a byte by byte basis. This
is achieved by use of the BL[3:0] input signals where BL[3] controls the
latching of the data present on D[31:24] of the data bus and so on.

In a memory system containing word wide memory only, BL[3:0] may be
tied HIGH. For subword wide memory systems, BL[3:0] are used to latch
the data as it is read out of memory. For example, a word access to
halfword wide memory must take place in two memory cycles. In the first
cycle, the data for D[15:0] is obtained from the memory and latched into
the processor on the falling edge of MCLK when BL[1:0] are both HIGH.
In the second cycle, the data for D[31:16] is latched into the processor
on the falling edge of MCLK when BL[3:2] are both HIGH.

A memory access like this is shown in Figure 6.8. Here, a word access
is performed from halfword wide memory in two cycles. In the first, the
data read is applied to the lower half of the bus, in the second cycle the
read data is applied to the upper half of the bus. Since two memory
cycles were required, nWAIT is used to stretch the internal processor
clock. However, nWAIT does not effect the operation of the data latches.
In this way, data may be extracted from memory word, halfword or byte
Stretching Access Times 6-11
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at a time, and the memory may have as many wait states as required.
In any multicycle memory access, nWAIT is held LOW until the final
quantum of data is latched.

In this example, BL[3:0] were driven to value 0x3 in the first cycle so that
only the latches on D[15:0] were opened. In fact, BL[3:0] could have
been driven to value 0xF and all the latches opened. Since in the second
cycle, the latches on D[31:16] were written with the correct data, this
would not have effected the processor's operation.

Note: BL[3:0] should all be HIGH during store cycles.

Figure 6.8 Memory Access

As a further example, a halfword load from 2-wait state byte-wide
memory is shown in Figure 6.9. Here, each memory access takes two
cycles. In the first, access, BL[3:0] are driven to value 0xF. The correct
data is latched from D[7:0] while unknown data is latched from D[31:8].
In the second access, the byte for D[15:8] is latched and so the halfword
on D[15:0] has been correctly read from the memory. The fact that
internally D[31:16] are unknown does not matter because internally the
processor will extract only the halfword it is interested in.

MCLK

APE

nMREQ
SEQ

A[31:0]

BL[3:0]

nWAIT

D[15:0]

D[31:16]

0x3 0xC
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Figure 6.9 Two Cycle Memory Access

6.10 External Data Bus

The core has a bidirectional data bus, D[31:0]. However, since some
ASIC design methodologies prohibit the use of bidirectional buses,
unidirectional data in, DIN[31:0], and data out, DOUT[31:0], buses are
also provided. The logical arrangement of these buses is shown in
Figure 6.10.

Figure 6.10 ARM7TDMI External Bus Arrangement

MCLK

APE

nMREQ
SEQ

A[31:0]

BL[3:0]

nWAIT

D[7:0]

D[15:8]

0xF 0x2

EmbeddedICE

ARM7TDMI

G

DIN[31:0]

D[31:0]

DOUT[31:0]

Macrocell
External Data Bus 6-13



ARM.book  Page 14  Wednesday, November 25, 1998  1:11 PM
When the bidirectional data bus is being used, the unidirectional buses
must be disabled by driving BUSEN LOW. The timing of the bus for three
cycles, load-store-load, is shown in Figure 6.11.

Figure 6.11 Bidirectional Bus Timing

Figure 6.12 Unidirectional Bus Timing

6.10.1 The Unidirectional Data Bus

When the unidirectional data buses are being used, (i.e. when BUSEN
is HIGH), the bidirectional bus, D[31:0], must be left unconnected.

When BUSEN is HIGH, all instructions and input data are presented on
the input data bus, DIN[31:0]. The timing of this data is similar to that of
the bidirectional bus when in input mode. The setup and hold of the data
must occur on the falling edge of MCLK. For the exact timing
requirements refer to CW001007 ARM7TDMI Microprocessor Core
Datasheet.

In this configuration, all output data is presented on DOUT[31:0]. The
value on this bus only changes when the processor performs a store
cycle. Again, the timing of the data is similar to that of the bidirectional
data bus. The value on DOUT[31:0] changes on the falling edge of
MCLK.

Read Cycle Store Cycle Read Cycle

MCLK

D[31:0]

Read Cycle Store Cycle Read Cycle

MCLK

DIN[31:0]

DOUT[31:0]

D[31:0]

D1 D2

D1 D2

DOUT

DOUT
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The bus timing of a read-write-read cycle combination is shown in
Figure 6.12.

When BUSEN is LOW, the buffer between DIN[31:0] and D[31:0] is
disabled. Any data presented on DIN[31:0] is ignored. Also, when
BUSEN is LOW, the value on DOUT[31:0] is forced to 0x00000000.

Typically, the unidirectional buses would be used internally in ASIC
embedded applications. Externally, most systems still require a
bidirectional data bus to interface to external memory. Figure 6.13, shows
how the unidirectional buses may be joined up at the pads of an ASIC
to connect to an external bidirectional bus.

Figure 6.13 External Connection of Unidirectional Buses

6.10.2 Bidirectional Data Bus

The core has a bidirectional data bus, D[31:0]. Most of the time, the core
reads from memory and so this bus is configured to input. During write
cycles however, the core must output data. During phase 2 of the
previous cycle, the signal nRW is driven HIGH to indicate a write cycle.
During the actual cycle, nENOUT is driven LOW to indicate that the core
is driving D[31:0] as an output. Figure 6.14 shows this bus timing (DBE
has been tied HIGH in this example). Figure 6.15 shows the circuit which
exists in the core for controlling exactly when the external bus is driven
out.

nENOUT

DOUT[31:0]

DIN[31:0]

PAD

XDATA[31:0]

ARM7TDMI
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Figure 6.14 Data Write Bus Cycle

The core macrocell has an additional bus control signal, nENIN, which
allows the external system to manually 3-state the bus. In the simplest
systems, nENIN can be tied LOW and nENOUT can be ignored.
However, in many applications when the external data bus is a shared
resource, greater control may be required. In this situation, nENIN can
be used to delay when the external bus is driven. Note that for backwards
compatibility, DBE is also included. At the macrocell level, DBE and
nENIN have almost identical functionality and in most applications one
can be tied off.

Section 6.10.3, “Example System: The ARM7TDMI Test Chip,” describes
how the core may be interfaced to an external data bus, using the
ARM7TDMI test chip as an example.

The core has another output control signal called TBE. This signal is
normally only used during test and must be tied HIGH when not in use.
When driven LOW, TBE forces all 3-state outputs to HIGH impedance. It
is as if both DBE and ABE have been driven LOW, causing the data bus,
the address bus, and all other signals normally controlled by ABE to
become high impedance. Note, however, that there is no scan cell on
TBE. Thus, TBE is completely independent of scan data and may be
used to put the outputs into a high impedance state while scan testing
takes place.

Table 6.3 lists the 3-state control of the core outputs.

Only signals with a ✔ in the ABE, DBE or TBE column can be driven to
the high impedance state.

Memory Cycle

MCLK

A[31:0]

nRW

nENOUT

D[31:0]
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Table 6.3 Output Enable Control Summary

ARM7TDMI Output ABE DBE TBE

A[31:0] ✔ ✔

D[31:0] ✔

nRW ✔ ✔

LOCK ✔ ✔

MAS[1:0] ✔ ✔

nOPC ✔ ✔

nTRANS ✔ ✔

DBGACK

ECLK

nCPI

nENOUT

nEXEC

nM[4:0]

TBIT

nMREQ

SDOUTBS

SDOUTDATA

SEQ

DOUT[31:0]
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Figure 6.15 ARM7TDMI Data Bus Control Circuit

6.10.3 Example System: The ARM7TDMI Test Chip

Connecting the core data bus, D[31:0], to an external shared bus
requires some simple additional logic. This will vary from application to
application. As an example, the following describes how the core
macrocell was connected to the bidirectional data bus pads of the
ARM7TDMI test chip.

In this application, care must be taken to prevent bus clash on D[31:0]
when the data bus drive changes direction. The timing of nENIN, and the
pad control signals must be arranged so that when the core starts to
drive out, the pad drive onto D[31:0] switches off before the core starts
to drive. Similarly, when the bus switches back to input, the core must
stop driving before the pad switches on.

All this can be achieved using a simple nonoverlapping clock generator.
The actual circuit implemented in the ARM7TDMI test chip is shown in
Figure 6.16. Note that at the core level, TBE and DBE are tied HIGH
(inactive). This is because in a packaged part, there is no need to ever

Scan
Cell

Scan
Cell

Scan
Cell

DBE

nENOUT

nENIN

TBE

D[31:0]

Core Control
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manually force the internal buses into a high impedance state. Note also
that at the pad level, the signal EDBE is factored into the bus control
logic. This allows the external memory controller to arbitrate the bus and
asynchronously disable ARM7TDMI test chip if required.

Figure 6.16 The ARM7TDMI Test Chip Data Bus Circuit

Figure 6.17 shows how the various control signals interact. Under normal
conditions, when the data bus is configured as input, nENOUT is HIGH,
nEN1 is LOW, and nEN2/nENIN is HIGH. Thus the pads drive XD[31:0]
onto D[31:0].

When a write cycle occurs, nRW is driven HIGH to indicate a write during
phase 2 of the previous cycle, (ie, with the address). During phase 1 of
the actual cycle, nENOUT is driven LOW to indicate that the core is
about to drive the bus. The falling edge of this signal makes nEN1 go
HIGH, which disables the input half pad from driving D[31:0]. This in turn
makes nEN2 go LOW, which enables the output half of the pad so that
the core is now driving the external data bus, XD[31:0]. nEN2 is then
buffered and driven back into the core on nENIN, so that finally the core
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macrocell drives D[31:0]. The delay between all the signals ensures that
there is no clash on the data bus as it changes direction from input to
output.

Figure 6.17 Data Bus Control Signal Timing

When the bus changes direction at the end of the cycle, the various
control signals switch the other way. Again, the nonoverlap ensures that
there is never a bus clash. This time, nENOUT is driven HIGH to denote
that the core no longer needs to drive the bus and the core’s output is
immediately switched off. This causes nEN2 to disable the output half of
the pad which in turn causes nEN1 to switch on the input half. Thus, the
bus is back to its original input configuration.

Note that the data out time of the core is not directly determined by
nENOUT and nENIN, and so delaying exactly when the bus is driven will
not affect the propagation delay. Please refer to CW001007 ARM7TDMI
Microprocessor Core Datasheet for timing details.

nENOUT

nEN1

nEN2/nENIN

D[31:0]
6-20 Memory Interface



ARM.book  Page 1  Wednesday, November 25, 1998  1:11 PM
Chapter 7
Coprocessor Interface
This chapter describes the ARM7TDMI coprocessor interface and
contains the following sections:

• Section 7.1, “Overview,” page 7-1

• Section 7.2, “Interface Signals,” page 7-1

• Section 7.3, “Register Transfer Cycle,” page 7-3

• Section 7.4, “Privileged Instructions,” page 7-4

• Section 7.5, “Idempotency,” page 7-4

• Section 7.6, “Undefined Instructions,” page 7-5

7.1 Overview

The functionality of the core instruction set may be extended by the
addition of up to 16 external coprocessors. When the coprocessor is not
present, instructions intended for it will trap, and suitable software may
be installed to emulate its functions. Adding the coprocessor will then
increase the system performance in a software compatible way. Note that
some coprocessor numbers have already been assigned. Contact
ARM Ltd. for up-to-date information.

7.2 Interface Signals

Three dedicated signals control the coprocessor interface, nCPI, CPA
and CPB. The CPA and CPB inputs should be driven HIGH except when
they are being used for handshaking.
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7.2.1 Coprocessor Present/Absent

The core takes nCPI LOW whenever it starts to execute a coprocessor
(or undefined) instruction. (This will not happen if the instruction fails to
be executed because of the condition codes.) Each coprocessor will have
a copy of the instruction, and can inspect the CP# field to see which
coprocessor it is for. Every coprocessor in a system must have a unique
number and if that number matches the contents of the CP# field the
coprocessor should drive the CPA (coprocessor absent) line LOW. If no
coprocessor has a number which matches the CP# field, CPA and CPB
will remain HIGH, and the core will take the undefined instruction trap.
Otherwise the core observes the CPA line going LOW, and waits until the
coprocessor is not busy.

7.2.2 Busy (Waiting)

If CPA goes LOW, the core will watch the CPB (coprocessor busy) line.
Only the coprocessor which is driving CPA LOW is allowed to drive CPB
LOW, and it should do so when it is ready to complete the instruction.
The core will busy-wait while CPB is HIGH, unless an enabled interrupt
occurs, in which case it will break off from the coprocessor handshake
to process the interrupt. When the core returns from processing the
interrupt to retry the coprocessor instruction.

When CPB goes LOW, the instruction continues to completion. This will
involve data transfers taking place between the coprocessor and either
the core or memory, except in the case of coprocessor data operations
which complete immediately when the coprocessor ceases to be busy.

All three interface signals are sampled by both the core and the
coprocessor(s) on the rising edge of MCLK. If all three are LOW, the
instruction is committed to execution, and if transfers are involved they
will start on the next cycle. If nCPI has gone HIGH after being LOW, and
before the instruction is committed, the core has broken off from the
busy-wait state to service an interrupt. The instruction may be restarted
later, but other coprocessor instructions may come sooner, and the
instruction should be discarded.
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7.2.3 Pipeline Following

In order to respond correctly when a coprocessor instruction arises, each
coprocessor must have a copy of the instruction. All core instructions are
fetched from memory using the main data bus, and coprocessors are
connected to this bus, so they can keep copies of all instructions as they
go into the core pipeline. The nOPC signal indicates when an instruction
fetch is taking place, and MCLK gives the timing of the transfer, so these
may be used together to load an instruction pipeline within the
coprocessor.

7.2.4 Data Transfer Cycles

Once the coprocessor has gone not busy in a data transfer instruction,
it must supply or accept data at the core bus rate (defined by MCLK). It
can deduce the direction of transfer by inspection of the L bit in the
instruction, but must only drive the bus when permitted to by DBE being
HIGH. The coprocessor is responsible for determining the number of
words to be transferred; the core will continue to increment the address
by one word per transfer until the coprocessor tells it to stop. The
termination condition is indicated by the coprocessor driving CPA and
CPB HIGH.

There is no limit, in principle, to the number of words which one
coprocessor data transfer can move, but by convention no coprocessor
should allow more than 16 words in one instruction. More than this would
worsen the worst case core interrupt latency, as the instruction is not
interruptible once the transfers have commenced. At 16 words, this
instruction is comparable with a block transfer of 16 registers, and
therefore does not affect the worst case latency.

7.3 Register Transfer Cycle

The coprocessor register transfer cycle is the one case when the core
requires the data bus without requiring the memory to be active. The
memory system is informed that the bus is required by the core taking
both nMREQ and SEQ HIGH. When the bus is free, DBE should be
taken HIGH to allow the core or the coprocessor to drive the bus, and
an MCLK cycle times the transfer.
Register Transfer Cycle 7-3
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7.4 Privileged Instructions

The coprocessor may restrict certain instructions for use in privileged
modes only. To do this, the coprocessor will have to track the nTRANS
output.

As an example of the use of this facility, consider the case of a floating-
point coprocessor (FPU) in a multitasking system. The operating system
could save all the floating-point registers on every task switch, but this is
inefficient in a typical system where only one or two tasks will use
floating-point operations. Instead, there could be a privileged instruction
which turns the FPU on or off. When a task switch happens, the
operating system can turn the FPU off without saving its registers. If the
new task attempts an FPU operation, the FPU will appear to be absent,
causing an undefined instruction trap. The operating system will then
realize that the new task requires the FPU, so it will re-enable it and save
FPU registers. The task can then use the FPU as normal. If, however,
the new task never attempts an FPU operation (as will be the case for
most tasks), the state saving overhead will have been avoided.

7.5 Idempotency

A consequence of the implementation of the coprocessor interface, with
the interruptible busy-wait state, is that all instructions may be interrupted
at any point up to the time when the coprocessor goes not busy. If so
interrupted, the instruction will normally be restarted from the beginning
after the interrupt has been processed. It is therefore essential that any
action taken by the coprocessor before it goes not busy must be
idempotent, i.e., must be repeatable with identical results.

For example, consider a FIX operation in a floating point coprocessor
which returns the integer result to a core register. The coprocessor must
stay busy while it performs the floating-point to fixed-point conversion, as
the core will expect to receive the integer value on the cycle immediately
following that where it goes not busy. The coprocessor must therefore
preserve the original floating point value and not corrupt it during the
conversion, because it will be required again if an interrupt arises during
the busy period.
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The coprocessor data operation class of instruction is not generally
subject to idempotency considerations, as the processing activity can
take place after the coprocessor goes not busy. There is no need for the
core to be held up until the result is generated, because the result is
confined to stay within the coprocessor.

7.6 Undefined Instructions

Undefined instructions are treated by the core as coprocessor
instructions. All coprocessors must be absent (ie CPA and CPB must be
HIGH) when an undefined instruction is presented. ARM7TDMI will then
take the undefined instruction trap. Note that the coprocessor need only
look at bit 27 of the instruction to differentiate undefined instructions
(which all have a 0 in bit 27) from coprocessor instructions (which all
have a 1 in bit 27).

Note that when in THUMB state, coprocessor instructions are not
supported but undefined instructions are. Thus, all coprocessors must
monitor the state of the TBIT output from the core. When the core is in
THUMB state, coprocessors must appear absent (i.e., they must drive
CPA and CPB HIGH) and the instructions seen on the data bus must be
ignored. In this way, coprocessors will not erroneously execute THUMB
instructions, and all undefined instructions will be handled correctly.
Undefined Instructions 7-5
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Chapter 8
Debug Interface
This chapter describes the ARM7TDMI core advanced debug interface.
It contains the following sections:

• Section 8.1, “Overview,” page 8-1

• Section 8.2, “Debug Systems,” page 8-2

• Section 8.3, “Debug Interface Signals,” page 8-4

• Section 8.4, “Scan Chains and JTAG Interface,” page 8-7

• Section 8.5, “Reset,” page 8-11

• Section 8.6, “Pull-up Resistors,” page 8-11

• Section 8.7, “Instruction Register,” page 8-11

• Section 8.8, “Public Instructions,” page 8-12

• Section 8.9, “Test Data Registers,” page 8-16

• Section 8.10, “ARM7TDMI Core Clocks,” page 8-24

• Section 8.11, “Determining the Core and System State,” page 8-25

• Section 8.12, “PC Behavior During Debug,” page 8-30

• Section 8.13, “Priorities/Exceptions,” page 8-33

• Section 8.14, “Scan Interface Timing,” page 8-34

• Section 8.15, “Debug Timing,” page 8-38

8.1 Overview

The core debug interface is based on the IEEE Std. 1149.1 - 1990,
“Standard Test Access Port and Boundary-Scan Architecture”. Please
refer to this standard for an explanation of the terms used in this chapter
and for a description of the TAP controller states.
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The core contains hardware extensions for advanced debugging
features. These are intended to ease the user’s development of
application software, operating systems, and the hardware itself.

The debug extensions allow the core to be stopped either on a given
instruction fetch (breakpoint) or data access (watchpoint), or
asynchronously by a debug request. When this happens, the core is said
to be in debug state. At this point, the core’s internal state and the
system’s external state may be examined. Once examination is
complete, the core and system state may be restored and program
execution resumed.

The core is forced into debug state either by a request on one of the
external debug interface signals, or by an internal functional unit known
as the EmbeddedICE macrocell. Once in debug state, the core isolates
itself from the memory system. The core can then be examined while all
other system activity continues as normal.

The core’s internal state is examined using a JTAG-style serial interface,
which allows instructions to be serially inserted into the core’s pipeline
without using the external data bus. Thus, when in debug state, a store-
multiple (STM) could be inserted into the instruction pipeline and this
would dump the contents of the core’s registers. This data can be serially
shifted out without affecting the rest of the system.

8.2 Debug Systems

The ARM7TDMI core forms one component of a debug system that
interfaces from the high level debugging performed by the user to the low
level interface supported by the core. Such a system typically has three
parts:

1. The Debug Host

This is a computer, for example a PC, running a software debugger
such as ARMSD. The debug host allows the user to issue high level
commands such as “set breakpoint at location XX”, or “examine the
contents of memory from 0x0 to 0x100”.
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2. The Protocol Converter

The Debug Host will be connected to the core development system
through an interface (an RS232, for example). The messages
broadcast over this connection must be converted to the interface
signals of the core, and this function is performed by the protocol
converter.

3. ARM7TDMI core

The core, with hardware extensions to ease debugging, is the lowest
level of the system. The debug extensions allow the user to stall the
core from program execution, examine its internal state and the state
of the memory system, and then resume program execution.

Figure 8.1 Typical Debug System

The anatomy of the core is shown in Figure 8.3. The major blocks are:

ARM7TDMI – This is the CPU core, with hardware support for debug.

EmbeddedICE macrocell – This is a set of registers and comparators
used to generate debug exceptions (e.g., breakpoints). This unit is
described in Chapter 9, "EmbeddedICE Macrocell".

TAP Controller – This controls the action of the scan chains using a
JTAG serial interface.

The Debug Host and the Protocol Converter are system dependent. The
rest of this chapter describes the core’s hardware debug extensions.

Host computer running ARMSD

Protocol
Converter

Development System
Containing ARM7TDMI

Debug
Host

Debug
Target
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8.3 Debug Interface Signals

There are three primary external signals associated with the debug
interface:

• BREAKPT and DBGRQ

with which the system requests that the core enter debug state.

• DBGACK

which the core uses to flag back to the system that it is in debug
state.

8.3.1 Entry into Debug State

The core is forced into debug state after a breakpoint, watchpoint or
debug request has occurred.

Conditions under which a breakpoint or watchpoint occur can be
programmed using the EmbeddedICE macrocell. Alternatively, external
logic can monitor the address and data bus, and flag breakpoints and
watchpoints using the BREAKPT pin.

The timing is the same for externally generated breakpoints and
watchpoints. Data must always be valid around the falling edge of MCLK.
If this data is an instruction which generates a breakpoint, the BREAKPT
signal must be HIGH on the next rising edge of MCLK. Similarly, if the
data is for a load or store, this can be marked as a watchpoint by
asserting BREAKPT on the next rising edge of MCLK.

When a breakpoint or watchpoint is generated, there may be a delay
before the core enters debug state. When it does, the DBGACK signal is
asserted in the HIGH phase of MCLK. The timing for an externally
generated breakpoint is shown in Figure 8.2.
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Figure 8.2 Debug State Entry

8.3.1.1 Entry into Debug State on Breakpoint

After an instruction has generated a breakpoint, the core does not enter
debug state immediately. Instructions are marked as being a breakpoint
as they enter the core's instruction pipeline.

Thus the core only enters debug state when (and if) the instruction
reaches the pipeline’s execute stage.

A breakpoint instruction may not cause the core to enter debug state for
one of two reasons:

• A branch precedes the breakpoint instruction.

When the branch is executed, the instruction pipeline is flushed and
the breakpoint is cancelled.

• An exception has occurred.

Again, the instruction pipeline is flushed and the breakpoint is
cancelled. However, the normal way to exit from an exception is to
branch back to the instruction that would have executed next. This
involves refilling the pipeline, and so the breakpoint can be reflagged.

When a breakpoint conditional instruction reaches the execute stage of
the pipeline, the breakpoint is always taken and the core enters debug
state, regardless of whether the condition was met.
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A[31:0]

D[31:0]

BREAKPT
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Breakpoint instructions do not get executed: instead, the core enters
debug state. Thus, when the internal state is examined, the state before
the breakpoint instruction is seen. Once examination is complete, the
breakpoint should be removed and program execution restarted from the
previous breakpoint instruction.

8.3.1.2 Entry into Debug State on Watchpoint

Watchpoints occur on data accesses. A watchpoint is always taken, but
the core may not enter debug state immediately. In all cases, the current
instruction will complete. If this is a multiword load or store (LDMor STM),
many cycles may elapse before the watchpoint is taken.

Watchpoints can be thought of as being similar to data aborts. The
difference is if a data abort occurs, although the instruction completes,
all subsequent changes to the core’s state are prevented. This allows the
cause of the abort to be cured by the abort handler, and the instruction
re-executed. This is not so in the case of a watchpoint. Here, the
instruction completes and all changes to the core’s state occur (i.e., load
data is written into the destination registers, and base write back occurs).
Thus the instruction does not need to be restarted.

Watchpoints are always taken. If an exception is pending when a
watchpoint occurs, the core enters debug state in the mode of that
exception.

8.3.1.3 Entry into Debug State on Debug Request

ARM7TDMI may also be forced into debug state on debug request. This
can be done either through EmbeddedICE macrocell programming (see
Chapter 9, "EmbeddedICE Macrocell"), or by the assertion of the
DBGRQ signal. This signal is an asynchronous input and is thus
synchronized by logic inside the core before it takes effect. Following
synchronization, the core will normally enter debug state at the end of
the current instruction. However, if the current instruction is a busy-
waiting access to a coprocessor, the instruction terminates and the core
enters debug state immediately (this is similar to the action of nIRQ and
nFIQ).
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8.3.1.4 Action of ARM7TDMI in Debug State

Once the core is in debug state, nMREQ and SEQ are forced to indicate
internal cycles. This allows the rest of the memory system to ignore the
core and function as normal. Since the rest of the system continues
operation, the core must be forced to ignore aborts and interrupts.

The BIGEND signal should not be changed by the system during debug.
If it changes, not only will there be a synchronization problem, but the
programmer’s view of the core will change without the debugger’s
knowledge. nRESET must also be held stable during debug. If the
system applies reset to the core (ie. nRESET is driven LOW) then the
core’s state will change without the debugger’s knowledge.

The BL[3:0] signals must remain HIGH while the core is clocked by
DCLK in debug state to ensure all of the data in the scan cells is correctly
latched by the internal logic.

When instructions are executed in debug state, the core outputs (except
nMREQ and SEQ) will change asynchronously to the memory system.
For example, every time a new instruction is scanned into the pipeline,
the address bus will change. Although this is asynchronous it should not
affect the system, since nMREQ and SEQ are forced to indicate internal
cycles regardless of what the rest of ARM7TDMI is doing. The memory
controller must be designed to ensure that this asynchronous behavior
does not affect the rest of the system.

8.4 Scan Chains and JTAG Interface

There are three JTAG-style scan chains inside the core. These allow
testing, debugging and EmbeddedICE macrocell programming. The scan
chains are controlled from a JTAG-style TAP (Test Access Port)
controller. For further details of the JTAG specification, please refer to
IEEE Standard 1149.1 - 1990 “Standard Test Access Port and Boundary-
Scan Architecture”. In addition, support is provided for an optional fourth
scan chain. This is intended to be used for an external boundary scan
chain around the pads of a packaged device. The control signals
provided for this scan chain are described later.

Note: The scan cells are not fully JTAG compliant. The following
sections describe the limitations on their use.
Scan Chains and JTAG Interface 8-7
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8.4.1 Scan Limitations

The three scan paths are referred to as scan chain 0, 1 and 2: these are
shown in Figure 8.3 ARM7TDMI Scan Chain Arrangement.

8.4.1.1 Scan Chain 0

Scan chain 0 allows access to the entire periphery of the core, including
the data bus. The scan chain functions allow interdevice testing
(EXTEST) and serial testing of the core (INTEST).

The order of the scan chain (from SDINBS to SDOUTBS) is: data bus
bits [0:31], the control signals, followed by the address bus bits [31:0].

8.4.1.2 Scan Chain 1

Scan chain 1 is a subset of the signals that are accessible through scan
chain 0. Access to the core’s data bus D[31:0], and the BREAKPT signal
is available serially. There are 33 bits in this scan chain, the order being
(from serial data in to out): data bus bits 0 through 31, followed by
BREAKPT.

8.4.1.3 Scan Chain 2

This scan chain simply allows access to the EmbeddedICE macrocell
registers. Refer to Chapter 9, "EmbeddedICE Macrocell" for more detail.
8-8 Debug Interface
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Figure 8.3 ARM7TDMI Scan Chain Arrangement
.

8.4.2 The JTAG State Machine

The process of serial test and debug is best explained in conjunction with
the JTAG state machine. Figure 8.4 shows the state transitions that occur
in the TAP controller.

The state numbers are also shown on the diagram. These are output
from the core on the TAPSM[3:0] bits.

•

•
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Figure 8.4 Test Access Port (TAP) Controller State Transitions
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8.5 Reset

The boundary scan interface includes a state machine controller (the
TAP controller). In order to force the TAP controller into the correct state
after power up of the device, a reset pulse must be applied to the nTRST
signal. If the boundary scan interface is to be used, nTRST must be
driven LOW, and then HIGH again. If the boundary scan interface is not
to be used, the nTRST input should be driven by the same signal as
nRESET. Note that a clock on TCK is not necessary to reset the device.

The action of reset is as follows:

1. System mode is selected (i.e., the boundary scan chain cells do not
intercept any of the signals passing between the external system and
the core).

2. The IDCODEinstruction is selected. If the TAP controller is put into
the Shift-DR state and TCK is pulsed, the contents of the ID register
will be clocked out of TDO.

8.6 Pull-up Resistors

The IEEE 1149.1 standard effectively requires that TDI and TMS should
have internal pull-up resistors. In order to minimize static current draw,
these resistors are not fitted to the core. Accordingly, the 4 inputs to the
test interface (the above TDO, TDI, TMS, and TCK) must all be driven to
good logic levels to achieve normal circuit operation.

8.7 Instruction Register

The instruction register is 4 bits in length.

There is no parity bit. The fixed value loaded into the instruction register
during the Capture-IR controller state is 0b0001.
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8.8 Public Instructions

Table 8.1 lists the public instructions supported by the core.

:

In the descriptions that follow, TDI and TMS are sampled on the rising
edge of TCK and all output transitions on TDO occur as a result of the
falling edge of TCK.

8.8.1 EXTEST (0b0000)

The selected scan chain is placed in test mode by the EXTESTinstruction.

The EXTESTinstruction connects the selected scan chain between TDI
and TDO.

When the instruction register is loaded with the EXTESTinstruction, all the
scan cells are placed in their test mode of operation.

Table 8.1 Public Instructions

Instruction Code

EXTEST 0b0000

SCAN_N 0b0010

INTEST 0b1100

IDCODE 0b1110

BYPASS 0b1111

CLAMP 0b0101

HIGHZ 0b0111

CLAMPZ 0b1001

SAMPLE/PRELOAD 0b0011

RESTART 0b0100
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In the Capture-DR state, inputs from the system logic and outputs from
the output scan cells to the system are captured by the scan cells. In the
Shift-DR state, the previously captured test data is shifted out of the scan
chain using TDO, while new test data is shifted in using the TDI input.
This data is applied immediately to the system logic and system pins.

8.8.2 SCAN_N (0b0010)

This instruction connects the Scan Path Select Register between TDI
and TDO. During the Capture-DR state, the fixed value 0b1000 is loaded
into the register. During the Shift-DR state, the ID number of the desired
scan path is shifted into the scan path select register. In the Update-DR
state, the scan register of the selected scan chain is connected between
TDI and TDO, and remains connected until a subsequent SCAN_N
instruction is issued. On reset, scan chain 3 is selected by default. The
scan path select register is 4 bits long in this implementation, although
no finite length is specified.

8.8.3 INTEST (0b1100)

The selected scan chain is placed in test mode by the INTEST instruction.

The INTEST instruction connects the selected scan chain between TDI
and TDO.

When the instruction register is loaded with the INTEST instruction, all the
scan cells are placed in their test mode of operation.

In the Capture-DR state, the value of the data applied from the core logic
to the output scan cells, and the value of the data applied from the
system logic to the input scan cells is captured.

In the Shift-DR state, the previously captured test data is shifted out of
the scan chain using the TDO signal, while new test data is shifted in
through the TDI signal.

Single-step operation is possible using the INTEST instruction.
Public Instructions 8-13
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8.8.4 IDCODE (0b1110)

The IDCODEinstruction connects the device identification register (or ID
register) between TDI and TDO. The ID register is a 32-bit register that
allows the manufacturer, part number and version of a component to be
determined through the TAP. See Section 8.9.2, “ARM7TDMI Device
Identification (ID) Code Register,” for the details of the ID register format.

When the instruction register is loaded with the IDCODEinstruction, all the
scan cells are placed in their normal (system) mode of operation.

In the Capture-DR state, the device identification code is captured by the
ID register. In the Shift-DR state, the previously captured device
identification code is shifted out of the ID register through the TDO
signal, while data is shifted in using the TDI signal into the ID register.
In the Update-DR state, the ID register is unaffected.

8.8.5 BYPASS (0b1111)

The BYPASSinstruction connects a 1 bit shift register (the BYPASS
register) between TDI and TDO.

When the BYPASSinstruction is loaded into the instruction register, all the
scan cells are placed in their normal (system) mode of operation. This
instruction has no effect on the system pins.

In the Capture-DR state, a logic 0 is captured by the bypass register. In
the Shift-DR state, test data is shifted into the bypass register using TDI
and out using TDO after a delay of one TCK cycle. Note that the first bit
shifted out will be a zero. The bypass register is not affected in the
Update-DR state. Note that all unused instruction codes default to the
BYPASSinstruction.

8.8.6 CLAMP (0b0101)

This instruction connects a 1 bit shift register (the BYPASS register)
between TDI and TDO.

When the CLAMPinstruction is loaded into the instruction register, the
state of all the output signals is defined by the values previously loaded
into the currently loaded scan chain.

Note: This instruction should only be used when scan chain 0 is
the currently selected scan chain.
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In the Capture-DR state, a logic 0 is captured by the bypass register. In
the Shift-DR state, test data is shifted into the bypass register using TDI
and out using TDO after a delay of one TCK cycle. Note that the first bit
shifted out will be a zero. The bypass register is not affected in the
Update-DR state.

8.8.7 HIGHZ (0b0111)

This instruction connects a 1-bit shift register (the BYPASS register)
between TDI and TDO.

When the HIGHZ instruction is loaded into the instruction register, the
Address bus, A[31:0], the data bus, D[31:0], plus nRW, nOPC, LOCK,
MAS[1:0] and nTRANS are all driven to the high impedance state and
the external HIGHZ signal is driven HIGH. This is as if the signal TBE
had been driven LOW.

In the Capture-DR state, a logic 0 is captured by the bypass register. In
the Shift-DR state, test data is shifted into the bypass register using TDI
and out using TDO after a delay of one TCK cycle. Note that the first bit
shifted out will be a zero. The bypass register is not affected in the
Update-DR state.

8.8.8 CLAMPZ (0b1001)

This instruction connects a 1-bit shift register (the BYPASS register)
between TDI and TDO.

When the CLAMPZinstruction is loaded into the instruction register, all the
3-state outputs (as described above) are placed in their inactive state,
but the data supplied to the outputs is derived from the scan cells. The
purpose of this instruction is to ensure that, during production test, each
output can be disabled when its data value is either a logic 0 or a logic 1.

In the Capture-DR state, a logic 0 is captured by the bypass register. In
the Shift-DR state, test data is shifted into the bypass register using TDI
and out using TDO after a delay of one TCK cycle. Note that the first bit
shifted out will be a zero. The bypass register is not affected in the
Update-DR state.
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8.8.9 SAMPLE/PRELOAD (0b0011)

This instruction is included for production test only, and should never be
used.

8.8.10 RESTART (0b0100)

This instruction is used to restart the processor on exit from debug state.
The RESTARTinstruction connects the bypass register between TDI and
TDO and the TAP controller behaves as if the BYPASSinstruction had
been loaded. The processor will resynchronize back to the memory
system once the Run-Test/Idle state is entered.

8.9 Test Data Registers

There are 6 test data registers which may be connected between TDI
and TDO. They are: Bypass register, ID Code register, Scan Chain
Select register, Scan chain 0, 1, or 2. These are now described in detail.

8.9.1 Bypass Register

Purpose – Bypasses the device during scan testing by providing a path
between TDI and TDO.

Length – One bit.

Operating Mode – When the BYPASS instruction is the current
instruction in the instruction register, serial data is transferred from TDI
to TDO in the Shift-DR state with a delay of one TCK cycle.

There is no parallel output from the bypass register.

A logic 0 is loaded from the parallel input of the bypass register in the
Capture-DR state.

8.9.2 ARM7TDMI Device Identification (ID) Code Register

Purpose – Reads the 32-bit device identification code. No
programmable supplementary identification code is provided.
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Length – 32 bits. The format of the ID register is as follows:

Figure 8.5 ID Register Format

Please contact your supplier for the correct Device Identification Code.

For the CW001004 the value returned by this register is
0b0001.1111.0000.1111.0000.1111.0000.1111.

For the CW001007 this register is not implemented in the core, and will
read back all zeroes, indicating that no valid ID is present. If you wish to
implement an ID this must be done through interaction with the JTAG
states signals accessible externally to the core.

Operating Mode: – When the IDCODEinstruction is current, the ID
register is selected as the serial path between TDI and TDO.

There is no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register from
its parallel inputs during the Capture-DR state.

8.9.3 Instruction Register

Purpose – Changes the current TAP instruction.

Length – Four bits.

Operating mode – When in the Shift-IR state, the instruction register is
selected as the serial path between TDI and TDO.

During the Capture-IR state, the value 0b0001 is loaded into this register.
This is shifted out during Shift-IR (LSB first), while a new instruction is
shifted in (LSB first). During the Update-IR state, the value in the
instruction register becomes the current instruction. On reset, IDCODE
becomes the current instruction.

31 28 27 12 11 1 0

Version Part Number Manufacturer Identity 1
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8.9.4 Scan Chain Select Register

Purpose – Changes the current active scan chain.

Length – Four bits.

Operating mode – After SCAN_Nhas been selected as the current
instruction, when in the Shift-DR state, the Scan Chain Select register is
selected as the serial path between TDI and TDO.

During the Capture-DR state, the value 0b1000 is loaded into this
register. This is shifted out during Shift-DR (LSB first), while a new value
is shifted in (LSB first). During the Update-DR state, the value in the
register selects a scan chain to become the currently active scan chain.
All further instructions such as INTEST then apply to that scan chain.

The currently selected scan chain only changes when a SCAN_N
instruction is executed, or a reset occurs. On reset, scan chain 3 is
selected as the active scan chain.

The number of the currently selected scan chain is reflected on the
SCREG[3:0] outputs. The TAP controller may be used to drive external
scan chains in addition to those within the ARM7TDMI macrocell. The
external scan chain must be assigned a number and control signals for
it can be derived from SCREG[3:0], IR[3:0], TAPSM[3:0], TCK1 and
TCK2.

The list of scan chain numbers allocated by ARM7TDMI are shown in
Table 8.2. An external scan chain may take any other number.The serial
data stream to be applied to the external scan chain is made present on
SDINBS, the serial data back from the scan chain must be presented to
the TAP controller on the SDOUTBS input. The scan chain present
between SDINBS and SDOUTBS will be connected between TDI and
TDO whenever scan chain 3 is selected, or when any of the unassigned
scan chain numbers is selected. If there is more than one external scan
chain, a multiplexor must be built externally to apply the desired scan
chain output to SDOUTBS. The multiplexor can be controlled by
decoding SCREG[3:0].
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8.9.5 Scan Chains 0, 1, and 2

These allow serial access to the core logic, and to EmbeddedICE
macrocell for programming purposes. They are described in detail below.

8.9.5.1 Scan Chain 0 and 1

Purpose – Allows access to the processor core for test and debug.

Length – Scan chain 0 is 105 bits, Scan chain 1 is 33 bits.

Each scan chain cell is fairly simple, and consists of a serial register and
a multiplexer. The scan cells perform two basic functions, capture and
shift.

For input cells, the capture stage involves copying the value of the
system input to the core into the serial register. During shift, this value is
output serially. The value applied to the core from an input cell is either
the system input or the contents of the serial register, and this is
controlled by the multiplexer.

Table 8.2 Scan Chain Number Allocation

Scan Chain Number Function

0 Macrocell scan test

1 Debug

2 EmbeddedICE macrocell programming

3 External boundary scan

4 Reserved

8 Reserved
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Figure 8.6 Input Scan Cell

For output cells, capture involves placing the value of a core’s output into
the serial register. During shift, this value is serially output as before. The
value applied to the system from an output cell is either the core output,
or the contents of the serial register.

All the control signals for the scan cells are generated internally by the
TAP controller. The action of the TAP controller is determined by the
current instruction, and the state of the TAP state machine. This is
described below.

There are three basic modes of operation of the scan chains, INTEST,
EXTEST and SYSTEM, and these are selected by the various TAP
controller instructions. In SYSTEM mode, the scan cells are idle. System
data is applied to inputs, and core outputs are applied to the system. In
INTEST mode, the core is internally tested. The data serially scanned in
is applied to the core, and the resulting outputs are captured in the output
cells and scanned out. In EXTEST mode, data is scanned onto the core's
outputs and applied to the external system. System input data is
captured in the input cells and then shifted out.

Note: The scan cells are not fully JTAG compliant in that they do
not have an Update stage. Therefore, while data is being
moved around the scan chain, the contents of the scan cell
is not isolated from the output. Thus the output from the
scan cell to the core or to the external system could change
on every scan clock.

Shift
Register

Latch

System Data In

SHIFT Clock

Data to

Serial Data In

Serial Data Out

CAPTURE Clock

Core
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This does not affect the core since its internal state does not change until
it is clocked. However, the rest of the system needs to be aware that
every output could change asynchronously as data is moved around the
scan chain. External logic must ensure that this does not harm the rest
of the system.

8.9.5.2 Scan Chain 0

Scan chain 0 is intended primarily for interdevice testing (EXTEST), and
testing the core (INTEST). Scan chain 0 is selected using the SCAN_N
instruction: see Section 8.8.2, “SCAN_N (0b0010).”

INTEST allows serial testing of the core. The TAP Controller must be
placed in INTEST mode after scan chain 0 has been selected. During
Capture-DR, the current outputs from the core’s logic are captured in the
output cells. During Shift-DR, this captured data is shifted out while a
new serial test pattern is scanned in, thus applying known stimuli to the
inputs. During Run-Test/Idle, the core is clocked. Normally, the TAP
controller should only spend 1 cycle in Run-Test/Idle. The whole
operation may then be repeated.

For details of the core’s clocks during test and debug, see Section 8.10,
“ARM7TDMI Core Clocks”.

EXTEST allows interdevice testing, useful for verifying the connections
between devices on a circuit board. The TAP Controller must be placed
in EXTEST mode after scan chain 0 has been selected. During
Capture-DR, the current inputs to the core's logic from the system are
captured in the input cells. During Shift-DR, this captured data is shifted
out while a new serial test pattern is scanned in, thus applying known
values on the core’s outputs. During Update-DR, the value shifted into
the data bus D[31:0] scan cells appears on the outputs. For all other
outputs, the value appears as the data is shifted round. Note, during
Run-Test/Idle, the core is not clocked. The operation may then be
repeated.

Table 8.4 lists the Scan Chain 0 bit order.
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8.9.5.3 Scan Chain 1

The primary use for scan chain 1 is for debugging, although it can be
used for EXTEST on the data bus. Scan chain 1 is selected using the
SCAN_NTAP Controller instruction. Debugging is similar to INTEST, and
the procedure described above for scan chain 0 should be followed.

Note that this scan chain is 33 bits long–32 bits for the data value, plus
the scan cell on the BREAKPT core input. This 33rd bit serves four
purposes:

1. Under normal INTEST test conditions, it allows a known value to be
scanned into the BREAKPT input.

2. During EXTEST test conditions, the value applied to the BREAKPT
input from the system can be captured.

3. While debugging, the value placed in the 33rd bit determines
whether the core synchronizes back to system speed before
executing the instruction. See Section 8.12.5, “System Speed
Access” for further details.

4. After the core has entered debug state, the first time this bit is
captured and scanned out, its value tells the debugger whether the
core entered debug state due to a breakpoint (bit 33 LOW), or a
watchpoint (bit 33 HIGH).

8.9.5.4 Scan Chain 2

Purpose – Allows EmbeddedICE macrocell's registers to be accessed.
The order of the scan chain, from TDI to TDO is: read/write, register
address bits 4 to 0, followed by data value bits 31 to 0. See Figure 9.2.

Length – 38 bits.

To access this serial register, scan chain 2 must first be selected using
the SCAN_NTAP controller instruction. The TAP controller must then be
placed in INTEST mode. No action is taken during Capture-DR. During
Shift-DR, a data value is shifted into the serial register. Bits 32 to 36
specify the address of the EmbeddedICE macrocell register to be
accessed. During Update-DR, this register is either read or written
depending on the value of bit 37 (0 = read). Refer to Chapter 9,
"EmbeddedICE Macrocell," for further details.
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8.9.5.5 Scan Chain 3

Purpose – Allows ARM7TDMI to control an external boundary scan
chain.

Length – User-defined length.

Scan chain 3 is provided so that an optional external boundary scan
chain may be controlled through the core. Typically this would be used
for a scan chain around the pad ring of a packaged device. The following
control signals are provided which are generated only when scan chain
3 has been selected. These outputs are inactive at all other times.

In addition to these control outputs, SDINBS output and SDOUTBS input
are also provided. When an external scan chain is in use, SDOUTBS
should be connected to the serial data output and SDINBS should be
connected to the serial data input.

DRIVEBS This would be used to switch the scan cells from
system mode to test mode. This signal is
asserted whenever either the INTEST, EXTEST,
CLAMP or CLAMPZ instruction is selected.

PCLKBS This is an update clock, generated in the
Update-DR state. Typically the value scanned into
a chain would be transferred to the cell output on
the rising edge of this signal.

ICAPCLKBS, ECAPCLKBS These are capture clocks used to sample data
into the scan cells during INTEST and EXTEST
respectively. These clocks are generated in the
Capture-DR state.

SHCLKBS, SHCLK2BS These are nonoverlapping clocks generated in the
Shift-DR state used to clock the master and slave
element of the scan cells respectively. When the
state machine is not in the Shift-DR state, both
these clocks are LOW.

nHIGHZ This signal may be used to drive the outputs of
the scan cells to the high impedance state. This
signal is driven LOW when the HIGHZ instruction
is loaded into the instruction register, and HIGH at
all other times.
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8.10 ARM7TDMI Core Clocks

The core has two clocks, the memory clock, MCLK, and an internally
TCK generated clock, DCLK. During normal operation, the core is
clocked by MCLK, and internal logic holds DCLK LOW. When the core
is in the debug state, the core is clocked by DCLK under control of the
TAP state machine, and MCLK may free run. The selected clock is output
on the signal ECLK for use by the external system. Note that when the
CPU core is being debugged and is running from DCLK, nWAIT has no
effect.

8.10.1 Clock Switch During Debug

When the core enters debug state, it must switch from MCLK to DCLK.
This is handled automatically by logic in the core. On entry to debug
state, the core asserts DBGACK in the HIGH phase of MCLK. The switch
between the two clocks occurs on the next falling edge of MCLK. This is
shown in Figure 8.7.

Figure 8.7 Clock Switching on Entry to Debug State

The core is forced to use DCLK as the primary clock until debugging is
complete. On exit from debug, the core must be allowed to synchronize
back to MCLK. This must be done in the following sequence. The final
instruction of the debug sequence must be shifted into the data bus scan
chain and clocked in by asserting DCLK. At this point, BYPASSmust be
clocked into the TAP instruction register. The core will now automatically
resynchronize back to MCLK and start fetching instructions from memory
at MCLK speed. Please refer also to Section 8.11.3, “Exit from Debug
State”.

MCLK

DBGACK

DCLK

ECLK

Multiplexer Switching Point
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8.11 Determining the Core and System State

When the core is in debug state, the core and system’s state may be
examined. This is done by forcing load and store multiples into the
instruction pipeline.

Before the core and system state can be examined, the debugger must
first determine whether the processor was in THUMB or ARM state when
it entered debug. This is achieved by examining bit 4 of EmbeddedICE’s
Debug Status register. If this is HIGH, the core was in THUMB state
when it entered debug.

8.11.1 Determining the Core’s State

If the processor has entered debug state from THUMB state, the simplest
course of action is for the debugger to force the core back into ARM
state. Once this is done, the debugger can always execute the same
sequence of instructions to determine the processor's state.

To force the processor into ARM state, the following sequence of THUMB
instructions should be executed on the core:

STR R0, [R0] ; Save R0 before use
MOV R0, PC ; Copy PC into R0
STR R0, [R0] ; Now save the PC in R0
BX PC ; Jump into ARM state
MOV R8, R8 ; NOP
MOV R8, R8 ; NOP

Note: Since all THUMB instructions are only 16 bits long, the
simplest course of action when shifting them into Scan
Chain 1 is to repeat the instruction twice. For example, the
encoding for BX R0 is 0x4700. Thus if 0x47004700 is
shifted into scan chain 1, the debugger does not have to
keep track of which half of the bus the processor expects
to read the data from.

From this point on, the processor's state can be determined by the
sequences of ARM instructions described below.

Once the processor is in ARM state, typically the first instruction
executed would be:

STM R0, {R0-R15}
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This causes the contents of the registers to be made visible on the data
bus. These values can then be sampled and shifted out.

Note: The above use of R0 as the base register for the STM
instruction is for illustration only, any register could be used.

After determining the values in the current bank of registers, it may be
desirable to access the banked registers. This can only be done by
changing mode. Normally, a mode change may only occur if the core is
already in a privileged mode. However, while in debug state, a mode
change from any mode into any other mode may occur. Note that the
debugger must restore the original mode before exiting debug state.

For example, assume that the debugger had been asked to return the
state of the USER mode and FIQ mode registers, and debug state was
entered in supervisor mode.

The instruction sequence could be:

STM R0, {R0-R15} ; Save current registers
MRS R0, CPSR
STR R0, R0 ; Save CPSR to determine current mode
BIC R0, 0x1F ; Clear mode bits
ORR R0, 0x10 ; Select user mode
MSR CPSR, R0 ; Enter USER mode
STM R0, {R13,R14} ; Save register not visible before
ORR R0, 0x01 ; Select FIQ mode
MSR CPSR, R0 ; Enter FIQ mode
STM R0, {R8-R14} ; Save banked FIQ registers

All these instructions are said to execute at debug speed. Debug speed
is much slower than system speed since between each core clock,
33 scan clocks occur in order to shift in an instruction, or shift out data.
Executing instructions more slowly than usual is fine for accessing the
core’s state since ARM7TDMI is fully static. However, this same method
cannot be used for determining the state of the rest of the system.

While in debug state, only the following instructions may legally be
scanned into the instruction pipeline for execution:

• All data processing operations, except TEQP

• All load, store, load multiple and store multiple instructions

• MSRand MRS
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8.11.2 Determining System State

In order to meet the dynamic timing requirements of the memory system,
any attempt to access system state must occur synchronously to it. Thus,
the core must be forced to synchronize back to system speed. This is
controlled by the 33rd bit of scan chain 1.

Any instruction may be placed in scan chain 1 with bit 33 (the BREAKPT
bit) LOW. This instruction will then be executed at debug speed. To
execute an instruction at system speed, the instruction prior to it must be
scanned into scan chain 1 with bit 33 set HIGH.

After the system speed instruction has been scanned into the data bus
and clocked into the pipeline, the BYPASSinstruction must be loaded into
the TAP controller. This will cause the core to automatically synchronize
back to MCLK (the system clock), execute the instruction at system
speed, and then re-enter debug state and switch itself back to the
internally generated DCLK. When the instruction has completed,
DBGACK will be HIGH and the core will have switched back to DCLK.
At this point, INTEST can be selected in the TAP controller, and
debugging can resume.

In order to determine that a system speed instruction has completed, the
debugger must look at both DBGACK and nMREQ. In order to access
memory, the core drives nMREQ LOW after it has synchronized back to
system speed. This transition is used by the memory controller to
arbitrate whether the core can have the bus in the next cycle. If the bus
is not available, the core may have its clock stalled indefinitely. Therefore,
the only way to tell that the memory access has completed, is to examine
the state of both nMREQ and DBGACK. When both are HIGH, the
access has completed. Usually, the debugger would be using
EmbeddedICE macrocell to control debugging, and by reading
EmbeddedICE’s status register, the state of nMREQ and DBGACK can
be determined. Refer to Chapter 9, "EmbeddedICE Macrocell," for more
details.

By the use of system speed load multiples and debug speed store
multiples, the state of the system’s memory can be fed back to the debug
host.
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There are restrictions on which instructions may have the 33rd bit set.
The only valid instructions on which to set this bit are loads, stores, load
multiple and store multiple. See also Section 8.11.3, “Exit from Debug
State”. When the core returns to debug state after a system speed
access, bit 33 of scan chain 1 is set HIGH. This gives the debugger
information about why the core entered debug state the first time this
scan chain is read.

8.11.3 Exit from Debug State

Leaving debug state involves restoring the core’s internal state, causing
a branch to the next instruction to be executed, and synchronizing back
to MCLK. After restoring internal state, a branch instruction must be
loaded into the pipeline. See Section 8.12, “PC Behavior During Debug,”
for details on calculating the branch.

Bit 33 of scan chain 1 is used to force the core to resynchronize back to
MCLK. The second to last instruction of the debug sequence is scanned
in with bit 33 set HIGH. The final instruction of the debug sequence is
the branch, and this is scanned in with bit 33 LOW. The core is then
clocked to load the branch into the pipeline. Now, the RESTARTinstruction
is selected in the TAP controller. When the state machine enters the Run-
Test/Idle state, the scan chain will revert back to system mode and clock
resynchronization to MCLK will occur within the core. The core will then
resume normal operation, fetching instructions from memory. This delay,
until the state machine is in the Run-Test/Idle state, allows conditions to
be setup in other devices in a multiprocessor system without taking
immediate effect. Then, when the Run-Test/Idle state is entered, all the
processors resume operation simultaneously.

The function of DBGACK is to tell the rest of the system when the core
is in debug state. This can be used to inhibit peripherals such as
watchdog timers which have real-time characteristics. Also, DBGACK
can be used to mask out memory accesses which are caused by the
debugging process. For example, when the core enters debug state after
a breakpoint, the instruction pipeline contains the breakpoint instruction
plus two other instructions which have been prefetched. On entry to
debug state, the pipeline is flushed. Therefore, on exit from debug state,
the pipeline must be refilled to its previous state. Thus, because of the
debugging process, more memory accesses occur than would normally
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be expected. Any system peripheral which may be sensitive to the
number of memory accesses can be inhibited through the use of
DBGACK.

For example, imagine a fictitious peripheral that simply counts the
number of memory cycles. This device should return the same answer
after a program has been run both with and without debugging.
Figure 8.8 shows the behavior of the core on exit from the debug state.

Figure 8.8 Debug Exit Sequence

It can be seen from Figure 8.2 that the final memory access occurs in
the cycle after DBGACK goes HIGH, and this is the point at which the
cycle counter should be disabled. Figure 8.8 shows that the first memory
access that the cycle counter has not seen before occurs in the cycle
after DBGACK goes LOW, and so this is the point at which the counter
should be re-enabled.

Note that when a system speed access from debug state occurs, the
core temporarily drops out of debug state, and so DBGACK can go LOW.
If there are peripherals which are sensitive to the number of memory
accesses, they must be led to believe that the core is still in debug state.
By programming the EmbeddedICE macrocell control register, the value
on DBGACK can be forced to be HIGH. See Chapter 9, "EmbeddedICE
Macrocell," for more details.
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8.12 PC Behavior During Debug

In order that the core may be forced to branch back to the place at which
program flow was interrupted by debug, the debugger must keep track of
what happens to the PC. There are five cases: breakpoint, watchpoint,
watchpoint when another exception occurs, debug request, and system
speed access.

8.12.1 Breakpoint

Entry to the debug state from a breakpoint advances the PC by four
addresses, or 16 bytes. Each instruction executed in debug state
advances the PC by one address, or 4 bytes. The normal way to exit
from debug state after a breakpoint is to remove the breakpoint, and
branch back to the previous breakpoint address.

For example, if the core entered debug state from a breakpoint set on a
given address and two debug speed instructions were executed, a
branch of −7 addresses must occur (4 for debug entry, + 2 for the
instructions, + 1 for the final branch). The following sequence shows the
data scanned into scan chain 1. This is MSB first, and so the first digit
is the value placed in the BREAKPT bit, followed by the instruction data.

0 E0802000 ; ADD R2, R0, R0
1 E1826001 ; ORR R6, R2, R1
0 EAFFFFF9 ; B -7 (2’s complement)

Note that once in debug state, a minimum of two instructions must be
executed before the branch, although these may both be NOPs (MOV R0,
R0). For small branches, the final branch could be replaced with a
subtract with the PC as the destination (SUB PC, PC, #28 in the above
example).

8.12.2 Watchpoints

Returning to program execution after entering debug state from a
watchpoint is done in the same way as described above. Debug entry
adds four addresses to the PC, and every instruction adds one address.
The difference is that since the instruction that caused the watchpoint
has executed, the program returns to the next instruction.
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8.12.3 Watchpoint with Another Exception

If a watchpoint access simultaneously causes a data abort, the core will
enter debug state in abort mode. Entry into debug is held off until the
core has changed into abort mode, and fetched the instruction from the
abort vector.

A similar sequence is followed when an interrupt, or any other exception,
occurs during a watchpoint memory access. The core will enter debug
state in the exception mode, and so the debugger must check to see
whether this happened. The debugger can deduce whether an exception
occurred by looking at the current and previous mode (in the CPSR and
SPSR), and the value of the PC. If an exception did take place, the user
should be given the choice of whether to service the exception before
debugging.

Exiting debug state if an exception occurred is slightly different from the
other cases. Here, entry to debug state causes the PC to be incremented
by three addresses rather than four, and this must be taken into account
in the return branch calculation. For example, suppose that an abort
occurred on a watchpoint access and 10 instructions had been executed
to determine this. The following sequence could be used to return to
program execution.

0 E1A00000 ; MOV R0, R0
1 E1A00000 ; MOV R0, R0
0 EAFFFFF0 ; B -16

This will force a branch back to the abort vector, causing the instruction
at that location to be refetched and executed. Note that after the abort
service routine, the instruction which caused the abort and watchpoint
will be re-executed. This will cause the watchpoint to be generated and
hence the core will enter debug state again.

8.12.4 Debug Request

Entry into debug state using a debug request is similar to a breakpoint.
However, unlike a breakpoint, the last instruction will have completed
execution and so must not be refetched on exit from debug state.
Therefore, it can be thought that entry to debug state adds three
addresses to the PC, and every instruction executed in debug state
adds one.
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For example, suppose that the user has invoked a debug request, and
decides to return to program execution straight away. The following
sequence could be used:

0 E1A00000 ; MOV R0, R0
1 E1A00000 ; MOV R0, R0
0 EAFFFFFA ; B -6

This restores the PC, and restarts the program from the next instruction.

8.12.5 System Speed Access

If a system speed access is performed during debug state, the value of
the PC is increased by three addresses. Since system speed instructions
access the memory system, it is possible for aborts to take place. If an
abort occurs during a system speed memory access, the core enters
abort mode before returning to debug state.

This is similar to an aborted watchpoint except that the problem is much
harder to fix, because the abort was not caused by an instruction in the
main program, and the PC does not point to the instruction which caused
the abort. An abort handler usually looks at the PC to determine the
instruction which caused the abort, and hence the abort address. In this
case, the value of the PC is invalid, but the debugger should know what
location was being accessed. Thus the debugger can be written to help
the abort handler fix the memory system.

8.12.6 Summary of Return Address Calculations

The calculation of the branch return address can be summarized as
follows:

• For normal breakpoint and watchpoint, the branch is:

− (4 + N + 3S)

• For entry through debug request (DBGRQ), or watchpoint with
exception, the branch is:

− (3 + N + 3S)

where N is the number of debug speed instructions executed (including
the final branch), and S is the number of system speed instructions
executed.
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8.13 Priorities/Exceptions

Because the normal program flow is broken when a breakpoint or a
debug request occurs, debug can be thought of as being another type of
exception. Some of the interaction with other exceptions has been
described above. This section summarizes the priorities.

8.13.1 Breakpoint with Prefetch Abort

When a breakpoint instruction fetch causes a prefetch abort, the abort is
taken and the breakpoint is disregarded. Normally, prefetch aborts occur
when, for example, an access is made to a virtual address which does
not physically exist, and the returned data is therefore invalid. In such a
case the operating system’s normal action will be to swap in the page of
memory and return to the previously invalid address. This time, when the
instruction is fetched, and providing the breakpoint is activated (it may be
data dependent), the core will enter debug state.

Thus the prefetch abort takes higher priority than the breakpoint.

8.13.2 Interrupts

When the core enters debug state, interrupts are automatically disabled.
If interrupts are disabled during debug, the core will never be forced into
an interrupt mode. Interrupts only have this effect on watchpoint
accesses. They are ignored at all times on breakpoints.

If an interrupt was pending during the instruction prior to entering debug
state, the core will enter debug state in the mode of the interrupt. Thus,
on entry to debug state, the debugger cannot assume that the core will
be in the expected mode of the user’s program. It must check the PC,
the CPSR and the SPSR to fully determine the reason for the exception.

Thus, debug takes higher priority than the interrupt, although the core
remembers that an interrupt has occurred.
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8.13.3 Data Aborts

As described above, when a data abort occurs on a watchpoint access,
the core enters debug state in abort mode. Thus the watchpoint has
higher priority than the abort, although, as in the case of interrupt, the
core remembers that the abort happened.

8.14 Scan Interface Timing

Please be aware that all core AC timing values are technology
dependent. To locate the values for your implementation, please refer to
the appropriate ARM7TDMI Microprocessor Core Datasheet, available
from LSI Logic.

Figure 8.9 Scan General Timing
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1. For correct data latching, the I/O signals (from the core and the pads) must
be setup and held with respect to the rising edge of TCK in the
Capture-DR state of the INTEST and EXTESTinstructions.

2. Assumes that the data outputs are loaded with the AC test loads (see AC
parameter specification).

Table 8.3 ARM7TDMI Scan Interface Timing

Symbol Parameter Notes

Tbscl TCK LOW period

Tbsch TCK HIGH period

Tbsis TDI,TMS setup to [TCr]

Tbsih TDI,TMS hold from [TCr]

Tbsoh TDO hold time 2

Tbsod TCK falling edge to TDO valid 2

Tbsss I/O signal setup to [TCr] 1

Tbssh I/O signal hold from [TCr] 1

Tbsdh data output hold time 2

Tbsdd TCK falling edge to data output valid 2

Tbsr Reset period

Tbse Output Enable time 2

Tbsz Output Disable time 2
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Table 8.4 Scan Chain 0 Signal Order

No. Signal Type 1 No. Signal Type 1

1 D[0] I/O 25 D[24] I/O

2 D[1] I/O 26 D[25] I/O

3 D[2] I/O 27 D[26] I/O

4 D[3] I/O 28 D[27] I/O

5 D[4] I/O 29 D[28] I/O

6 D[5] I/O 30 D[29] I/O

7 D[6] I/O 31 D[30] I/O

8 D[7] I/O 32 D[31] I/O

9 D[8] I/O 33 BREAKPT I

10 D[9] I/O 34 nENIN I

11 D[10] I/O 35 nENOUT O

12 D[11] I/O 36 LOCK O

13 D[12] I/O 37 BIGEND I

14 D[13] I/O 38 DBE I

15 D[14] I/O 39 MAS[0] O

16 D[15] I/O 40 MAS[1] O

17 D[16] I/O 41 BL[0] I

18 D[17] I/O 42 BL[1] I

19 D[18] I/O 43 BL[2] I

20 D[19] I/O 44 BL[3] I

21 D[20] I/O 45 DCTL2 O

22 D[21] I/O 46 nRW O

23 D[22] I/O 47 DBGACK O

24 D[23] I/O 48 CGENDBGACK O

(Sheet 1 of 3)
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49 nFIQ I 72 TBIT O

50 nIRQ I 73 nWAIT I

51 nRESET I 74 A[31] O

52 ISYNC I 75 A[30] O

53 DBGRQ I 76 A[29] O

54 ABORT I 77 A[28] O

55 CPA I 78 A[27] O

56 nOPC O 79 A[26] O

57 IFEN I 80 A[25] O

58 nCPI O 81 A[24] O

59 nMREQ O 82 A[23] O

60 SEQ O 83 A[22] O

61 nTRANS O 84 A[21] O

62 CPB I 85 A[20] O

63 nM[4] O 86 A[19] O

64 nM[3] O 87 A[18] O

65 nM[2] O 88 A[17] O

66 nM[1] O 89 A[16] O

67 nM[0] O 90 A[15] O

68 nEXEC O 91 A[14] O

69 ALE I 92 A[13] O

70 ABE I 93 A[12] O

71 APE I 94 A[11] O

Table 8.4 Scan Chain 0 Signal Order (Cont.)

No. Signal Type 1 No. Signal Type 1

(Sheet 2 of 3)
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8.15 Debug Timing

Please be aware that all core AC timing values are technology
dependent. To locate the values for your implementation, please refer to
the appropriate ARM7TDMI Microprocessor Core Datasheet, available
from LSI Logic.

95 A[10] O 101 A[4] O

96 A[9] O 102 A[3] O

97 A[8] O 103 A[2] O

98 A[7] O 104 A[1] O

99 A[6] O 105 A[0] O

100 A[5] O – – –

1. I - Input, O - Output, I/O - Input/Output
2. DCTL is not described in this manual. DCTL is an output from the processor used to control the

unidirectional data out latch, DOUT [31:0]. DCTL is not visible from the periphery of ARM7TDMI.

Table 8.4 Scan Chain 0 Signal Order (Cont.)

No. Signal Type 1 No. Signal Type 1

(Sheet 3 of 3)

Table 8.5 ARM7TDMI Debug Interface Timing

Symbol Parameter

Ttdbgd TCK falling to DBGACK, DBGRQI changing

Ttpfd TCKf to TAP outputs

Ttpfh TAP outputs hold time from TCKf

Ttprd TCKr to TAP outputs

Ttprh TAP outputs hold time from TCKr

Ttckr TCK to TCK1, TCK2 rising

Ttckf TCK to TCK1, TCK2 falling

(Sheet 1 of 2)
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Tecapd TCK to ECAPCLK changing

Tdckf DCLK induced: TCKf to various outputs valid

Tdckfh DCLK induced: Various outputs hold from TCKf

Tdckr DCLK induced: TCKr to various outputs valid

Tdckrh DCLK induced: Various outputs hold from TCKr

Ttrstd nTRSTf to TAP outputs valid

Ttrsts nTRSTr setup to TCKr

Tsdtd SDOUTBS to TDO valid

Tclkbs TCK to Boundary Scan Clocks

Tshbsr TCK to SHCLKBS, SHCLK2BS rising

Tshbsf TCK to SHCLKBS, SHCLK2BS falling

Table 8.5 ARM7TDMI Debug Interface Timing (Cont.)

Symbol Parameter

(Sheet 2 of 2)
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Chapter 9
EmbeddedICE
Macrocell
This chapter describes the ARM7TDMI EmbeddedICE macrocell.

This chapter contains the following sections:

• Section 9.1, “Overview,” page 9-1

• Section 9.2, “Watchpoint Registers,” page 9-3

• Section 9.3, “Programming Breakpoints,” page 9-8

• Section 9.4, “Programming Watchpoints,” page 9-10

• Section 9.5, “Debug Control Register,” page 9-11

• Section 9.6, “Debug Status Register,” page 9-12

• Section 9.7, “Coupling Breakpoints and Watchpoints,” page 9-14

• Section 9.8, “Disabling EmbeddedICE Macrocell,” page 9-17

• Section 9.9, “EmbeddedICE Macrocell Timing,” page 9-17

• Section 9.10, “Programming Restriction,” page 9-17

• Section 9.11, “Debug Communication Channel,” page 9-18

9.1 Overview

The ARM7TDMI EmbeddedICE macrocell provides integrated on-chip
debug support for the ARM7TDMI core.

EmbeddedICE macrocell is programmed in a serial fashion using the
TAP controller. It consists of two real-time watchpoint units, together with
a control and status register. One or both of the watchpoint units can be
programmed to halt the execution of instructions by the core through its
BREAKPT signal. Execution is halted when a match occurs between the
values programmed into EmbeddedICE macrocell and the values
Book Title 9-1
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currently appearing on the address bus, data bus and various control
signals. Any bit can be masked so that its value does not affect the
comparison.

Figure 9.1 shows the relationship between the core, EmbeddedICE
macrocell and the TAP controller.

Note: Only those signals that are pertinent to EmbeddedICE
macrocell are shown.

Figure 9.1 EmbeddedICE Block Diagram
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Either watchpoint unit can be configured to be a watchpoint (monitoring
data accesses) or a breakpoint (monitoring instruction fetches).
Watchpoints and breakpoints can be made to be data dependent.

Two independent registers, Debug Control and Debug Status, provide
overall control of the EmbeddedICE macrocell operation.

9.2 Watchpoint Registers

The two watchpoint units, known as Watchpoint 0 and Watchpoint 1,
each contain three pairs of registers:

1. Address Value and Address Mask

2. Data Value and Data Mask

3. Control Value and Control Mask

Each register is independently programmable, and has its own address:
see Table 9.1.

Table 9.1 Function and Mapping of EmbeddedICE
Registers

Address Width Function

0b00000 3 Debug Control

0b00001 5 Debug Status

0b00100 6 Debug Communications Control Register

0b00101 32 Debug Communications Data Register

0b01000 32 Watchpoint 0 Address Value

0b01001 32 Watchpoint 0 Address Mask

0b01010 32 Watchpoint 0 Data Value

0b01011 32 Watchpoint 0 Data Mask

(Sheet 1 of 2)
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9.2.1 Programming and Reading Watchpoint Registers

A register is programmed by scanning data into the EmbeddedICE
macrocell scan chain (scan chain 2). The scan chain consists of a 38-bit
shift register comprising a 32-bit data field, a 5-bit address field and a
read/write bit. This is shown in Figure 9.2.

0b01100 9 Watchpoint 0 Control Value

0b01101 8 Watchpoint 0 Control Mask

0b10000 32 Watchpoint 1Address Value

0b10001 32 Watchpoint 1 Address Mask

0b10010 32 Watchpoint 1 Data Value

0b10011 32 Watchpoint 1 Data Mask

0b10100 9 Watchpoint 1 Control Value

0b10101 8 Watchpoint 1 Control Mask

Table 9.1 Function and Mapping of EmbeddedICE
Registers (Cont.)

Address Width Function

(Sheet 2 of 2)
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Figure 9.2 EmbeddedICE Macrocell Block Diagram

The data to be written is scanned into the 32-bit data field, the address
of the register into the 5-bit address field and a 1 into the read/write bit.

A register is read by scanning its address into the address field and a 0
into the read/write bit. The 32-bit data field is ignored.

The register addresses are shown in Table 9.1.

Note: A read or write actually takes place when the TAP controller
enters the Update-DR state.

9.2.2 Using the Mask Registers

For each Value register in a register pair, there is a Mask register of the
same format. Setting a bit to 1 in the Mask register causes the
comparator to disregard the corresponding bit in the Value register.
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For example, if a watchpoint is required on a particular memory location
but the data value is irrelevant, the Data Mask register can be
programmed to 0xFFFFFFFF (all bits set to 1) to make the entire Data
Bus field ignored.

Note: The mask is an XNOR mask rather than a conventional
AND mask: when a mask bit is set to 1, the comparator for
that bit position will always match, irrespective of the value
register or the input value.

Setting the mask bit to 0 means that the comparator will only match if
the input value matches the value programmed into the value register.

9.2.3 Control Registers

The Control Value and Control Mask registers are mapped identically in
the lower eight bits, as shown below.

Figure 9.3 Watchpoint Control Value and Mask Format

Bit 8 of the control value register is the ENABLE bit, which cannot
be masked.

The bits have the following functions:

ENABLE 8
If a watchpoint match occurs, the BREAKPT signal will
only be asserted when the ENABLE bit is set. This bit
only exists in the value register: it cannot be masked.

RANGE 7
Can be connected to the range output of another
watchpoint register. In the EmbeddedICE macrocell, the
RANGEOUT output of Watchpoint 1 is connected to the
RANGE input of Watchpoint 0. This allows the two
watchpoints to be coupled for detecting conditions that
occur simultaneously, e.g., for range checking.

8 7 6 5 4 3 2 1 0

ENABLE RANGE CHAIN EXTERN nTRANS nOPC MAS[1] MAS[0] nRW
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CHAIN 6
Can be connected to the chain output of another
watchpoint in order to implement, for example, debugger
requests of the form “breakpoint on address YYY only
when in process XXX”.

In the EmbeddedICE macrocell, the CHAINOUT output of
Watchpoint 1 is connected to the CHAIN input of
Watchpoint 0. The CHAINOUT output is derived from a
latch; the address/control field comparator drives the
write enable for the latch and the input to the latch is the
value of the data field comparator. The CHAINOUT latch
is cleared when the Control Value register is written or
when nTRST is LOW.

EXTERN 5
An external input to EmbeddedICE macrocell which
allows the watchpoint to be dependent upon some
external condition. The EXTERN input for Watchpoint 0
is labelled EXTERN0 and the EXTERN input for
Watchpoint 1 is labelled EXTERN1.

nTRANS 4
Compares against the not translate signal from the core
in order to distinguish between user mode (nTRANS = 0)
and nonuser mode (nTRANS = 1) accesses.

nOPC 3
Used to detect whether the current cycle is an instruction
fetch (nOPC = 0) or a data access (nOPC = 1).

MAS[1:0] [2:1]
Compares against the MAS[1:0] signal from the core in
order to detect the size of bus activity.

The encoding is shown in the following table.

Bit 1 Bit 0 Data size

0 0 Byte

0 1 Halfword

1 0 Word

1 1 (Reserved)
Watchpoint Registers 9-7
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nRW 0
Compares against the not read/write signal from the core
in order to detect the direction of bus activity. nRW is zero
for a read cycle and one for a write cycle.

For each of the bits 8:0 in the Control Value register, there is a
corresponding bit in the Control Mask register. This removes the
dependency on particular signals.

9.3 Programming Breakpoints

Breakpoints can be classified as hardware breakpoints or software
breakpoints.

Hardware breakpoints – Monitor the address value and can be set in
any code, even in code that is in ROM or code that is selfmodifying.

Software breakpoints – Monitor a particular bit pattern being fetched
from any address. One EmbeddedICE macrocell watchpoint can thus be
used to support any number of software breakpoints. Software
breakpoints can normally only be set in RAM because an instruction has
to be replaced by the special bit pattern chosen to cause a software
breakpoint.

9.3.1 Hardware Breakpoints

To make a watchpoint unit cause hardware breakpoints (i.e., on
instruction fetches):

1. Program its Address Value register with the address of the
instruction that will generate the breakpoint.

2. For a breakpoint in ARM state, program bits [1:0] of the Address
Mask register to 1. For a breakpoint in THUMB state, program bit 0
of the Address Mask to 1. In both cases the remaining bits are set
to 0.

3. Program the Data Value register only if you require a data dependent
breakpoint: i.e., only if the actual instruction code fetched must be
matched as well as the address. If the data value is not required,
program the Data Mask register to 0xFFFFFFFF (all bits to1),
otherwise program it to 0x00000000.
9-8 EmbeddedICE Macrocell



ARM.book  Page 9  Wednesday, November 25, 1998  1:11 PM
4. Program the Control Value register with nOPC = 0.

5. Program the Control Mask register with nOPC = 0, all other bits to 1.

6. If you need to make the distinction between user and nonuser mode
instruction fetches, program the nTRANS Value and Mask bits
as in steps 4 and 5 above.

7. If required, program the EXTERN, RANGE and CHAIN Value and
Mask bits in the same way as in steps 4 and 5 above.

9.3.2 Software Breakpoints

To make a watchpoint unit cause software breakpoints (i.e., on instruction
fetches of a particular bit pattern):

1. Program its Address Mask register to 0xFFFFFFFF (all bits set to 1)
so that the address is disregarded.

2. Program the Data Value register with the particular bit pattern that
has been chosen to represent a software breakpoint.

3. If a THUMB software breakpoint is being programmed, the 16-bit
pattern must be repeated in both halves of the Data Value register.
For example, if the bit pattern is 0xDFFF, then 0xDFFFDFFF must
be programmed. When a 16-bit instruction is fetched, EmbeddedICE
macrocell only compares the valid half of the data bus against the
contents of the Data Value register. In this way, a single Watchpoint
register can be used to catch software breakpoints on both the upper
and lower halves of the data bus.

4. Program the Data Mask register to 0x00000000.

5. Program the Control Value register with nOPC = 0.

6. Program the Control Mask register with nOPC = 0, all other bits to 1.

7. If you wish to make the distinction between user and nonuser mode
instruction fetches, program the nTRANS bit in the Control Value and
Control Mask registers accordingly.

8. If required, program the EXTERN, RANGE and CHAIN bits in the
same way as in steps 5 and 6 above.

Note: The address value register need not be programmed.
Programming Breakpoints 9-9
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9.3.2.1 Setting the Breakpoint

To set the software breakpoint:

1. Read the instruction at the desired address and store it away.

2. Write the special bit pattern representing a software breakpoint at the
address.

9.3.2.2 Clearing the Breakpoint

To clear the software breakpoint, restore the instruction to the address.

9.4 Programming Watchpoints

To make a watchpoint unit cause watchpoints (i.e., on data accesses):

1. Program its Address Value register with the address of the data
access to be watchpointed.

2. Program the Address Mask register to 0x00000000.

3. Program the Data Value register only if you require a data dependent
watchpoint; i.e. only if the actual data value read or written must be
matched as well as the address. If the data value is irrelevant,
program the Data Mask register to 0xFFFFFFFF (all bits set to 1)
otherwise program it to 0x00000000.

4. Program the Control Value register with nOPC = 1, nRW = 0 for a
read or nRW = 1 for a write, MAS[1:0] with the value corresponding
to the appropriate data size.

5. Program the Control Mask register with nOPC = 0, nRW = 0,
MAS[1:0] = 0, all other bits to 1. Note that nRW or MAS[1:0] may be
set to 1 if both reads and writes or data size accesses are to
generate watchpoints respectively.

6. If you wish to make the distinction between user and nonuser mode
data accesses, program the nTRANS bit in the Control Value and
Control Mask registers accordingly.

7. If required, program the EXTERN, RANGE and CHAIN bits in the
same way as steps 4 and 5 above.
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Note: The above are just examples of how to program the
watchpoint register to generate breakpoints and
watchpoints; many other ways of programming the registers
are possible. For instance, simple range breakpoints can be
provided by setting one or more of the address mask bits.

9.5 Debug Control Register

The Debug Control register is 3 bits wide. If the register is accessed for
a write (with the read/write bit HIGH), the control bits are written. If the
register is accessed for a read (with the read/write bit LOW), the control
bits are read. The layout of the Debug Control register follows in
Figure 9.4

Figure 9.4 Debug Control Register Format

As shown in Figure 9.6, the value stored in bit 1 of the control register is
synchronized and then ORed with the external DBGRQ before being
applied to the processor. The output of this OR gate is the signal
DBGRQI which is brought out externally from the macrocell.

The synchronization between control bit 1 and DBGRQI is to assist in
multiprocessor environments. The synchronization latch only opens
when the TAP controller state machine is in the Run-Test/Idle state. This
allows an enter debug condition to be setup in all the processors in the
system while they are still running. Once the condition is setup in all the
processors, it can then be applied to them simultaneously by entering the
Run-Test/Idle state.

In the case of DBGACK, the value of DBGACK from the core is ORed
with the value held in bit 0 to generate the external value of DBGACK
seen at the periphery of the core. This allows the debug system to signal
to the rest of the system that the core is still being debugged even when
system speed accesses are being performed (in which case the internal
DBGACK signal from the core will be LOW).

2 1 0

INTDIS DBGRQ DBGACK
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If Bit 2 (INTDIS) is asserted, the interrupt enable signal (IFEN) of the
core is forced LOW. Thus all interrupts (nIRQ and nFIQ) are disabled
during debugging (DBGACK = 1) or if the INTDIS bit is asserted. The
IFEN signal is driven according to the following table

:

9.6 Debug Status Register

The Debug Status register is 5 bits wide. If it is accessed for a write (with
the read/write bit set HIGH), the status bits are written. If it is accessed
for a read (with the read/write bit LOW), the status bits are read.

Figure 9.5 Debug Status Register Format

The function of each bit in this register is as follows:

TBIT 4
Allows TBIT to be read. This enables the debugger to
determine what state the processor is in, and hence
which instructions to execute.

nMREQ 3
Allows the state of the nMREQ signal from the core
(synchronized to TCK) to be read. This allows the
debugger to determine that a memory access from the
debug state has completed.

Table 9.2 IFEN Signal Control

DBGACK INTDIS IFEN

0 0 1

1 x 0

x 1 0

4 3 2 1 0

TBIT nMREQ IFEN DBGRQ DBGACK
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IFEN 2
Allows the state of the core interrupt enable signal (IFEN)
to be read. Since the capture clock for the scan chain
may be asynchronous to the processor clock, the
DBGACK output from the core is synchronized before
being used to generate the IFEN status bit.

DBGRQ 1
Allows the value on the synchronized version of DBGRQ
to be read.

DBGACK 0
Allows the value on the synchronized version of DBGACK
to be read.

The structure of the debug status register bits is shown in Figure 9.6.
Debug Status Register 9-13
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Figure 9.6 Structure of TBIT, nMREQ, DBGACK, DBGRQ and INTDIS Bits

9.7 Coupling Breakpoints and Watchpoints

Watchpoint units 1 and 0 can be coupled together using the CHAIN
and RANGE inputs. The use of CHAIN enables watchpoint 0 to be
triggered only if watchpoint 1 has previously matched. The use of
RANGE enables simple range checking to be performed by combining
the outputs of both watchpoints.
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(to core and

(from core)

+

Bit 0

+

Bit 2 Bit 2

+
IFEN
(to core)

DBGACK
(from core)

Synch

Bit 0

Synch

+

Bit 3SynchnMREQ
(from core)

Bit 4SynchTBIT
(from core)

Synch

ARM7TDMI output)
9-14 EmbeddedICE Macrocell



ARM.book  Page 15  Wednesday, November 25, 1998  1:11 PM
For the next few examples, let:

Av[31:0] be the value in the Address Value register

Am[31:0] be the value in the Address Mask register

A[31:0] be the Address Bus from the core

Dv[31:0] be the value in the Data Value register

Dm[31:0] be the value in the Data Mask register

D[31:0] be the Data Bus from the core

Cv[8:0] be the value in the Control Value register

Cm[7:0] be the value in the Control Mask register

C[9:0] be the combined Control Bus from the core, other watchpoint
registers and the EXTERN signal.

9.7.1 CHAINOUT Signal

The CHAINOUT signal is then derived as follows:

WHEN (({Av[31:0], Cv[4:0]} XNOR {A[31:0], C[4:0]}) OR
{Am[31:0],Cm[4:0]} == 0xFFFFFFFFF)

CHAINOUT = ((({Dv[31:0], Cv[6:4]} XNOR {D[31:0],C[7:5]}) OR
{Dm[31:0], Cm[7:5]}) == 0x7FFFFFFFF)

The CHAINOUT output of watchpoint register 1 provides the CHAIN
input to Watchpoint 0. This allows for quite complicated configurations of
breakpoints and watchpoints.

Take, for example, the request by a debugger to breakpoint on the
instruction at location YYY when running process XXX in a multiprocess
system.

If the current process ID is stored in memory, the above function can be
implemented with a watchpoint and breakpoint chained together. The
watchpoint address is set to a known memory location containing the
current process ID, the watchpoint data is set to the required process ID
and the ENABLE bit is set to “off”.
Coupling Breakpoints and Watchpoints 9-15
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The address comparator output of the watchpoint is used to drive the
write enable for the CHAINOUT latch, the input to the latch being the
output of the data comparator from the same watchpoint. The output of
the latch drives the CHAIN input of the breakpoint comparator. The
address YYY is stored in the breakpoint register and when the CHAIN
input is asserted, and the breakpoint address matches, the breakpoint
triggers correctly.

9.7.2 RANGEOUT Signal

The RANGEOUT signal is then derived as follows:

RANGEOUT = ((({Av[31:0], Cv[4:0]} XNOR {A[31:0], C[4:0]}) OR
{Am[31:0], Cm[4:0]}) == 0xFFFFFFFFF) AND ((({Dv[31:0],Cv[7:5]} XNOR
{D[31:0],C[7:5]}) OR {Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF)

The RANGEOUT output of watchpoint register 1 provides the RANGE
input to watchpoint register 0. This allows two breakpoints to be coupled
together to form range breakpoints. Note that selectable ranges are
restricted to being powers of 2. This is best illustrated by an example.

Example – If a breakpoint is to occur when the address is in the first 256
bytes of memory, but not in the first 32 bytes, the watchpoint registers
should be programmed as follows:

1. Watchpoint 1 is programmed with an address value of 0x00000000
and an address mask of 0x0000001F. The ENABLE bit is cleared.
All other Watchpoint 1 registers are programmed as normal for a
breakpoint. An address within the first 32 bytes will cause the
RANGE output to go HIGH but the breakpoint will not be triggered.

2. Watchpoint 0 is programmed with an address value of 0x00000000
and an address mask of 0x000000FF. The ENABLE bit is set and
the RANGE bit programmed to match a 0. All other Watchpoint 0
registers are programmed as normal for a breakpoint.

If Watchpoint 0 matches but Watchpoint 1 does not (i.e., the RANGE
input to Watchpoint 0 is 0), the breakpoint will be triggered.
9-16 EmbeddedICE Macrocell
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9.8 Disabling EmbeddedICE Macrocell

EmbeddedICE macrocell may be disabled by wiring the DBGEN input
LOW.

When DBGEN is LOW, BREAKPT and DBGRQ to the core are forced
LOW, DBGACK from the core is also forced LOW and the IFEN input to
the core is forced HIGH, enabling interrupts to be detected by the core.

When DBGEN is LOW, EmbeddedICE macrocell is also put into a low
power mode.

9.9 EmbeddedICE Macrocell Timing

The EXTERN1 and EXTERN0 inputs are sampled by EmbeddedICE
macrocell on the falling edge of ECLK. Sufficient setup and hold time
must therefore be allowed for these signals.

9.10 Programming Restriction

The EmbeddedICE macrocell watchpoint units should only be
programmed when the clock to the core is stopped. This can be achieved
by putting the core into the debug state.

The reason for this restriction is that if the core continues to run at ECLK
rates when EmbeddedICE macrocell is being programmed at TCK rates,
it is possible for the BREAKPT signal to be asserted asynchronously to
the core.

This restriction does not apply if MCLK and TCK are driven from the
same clock, or if it is known that the breakpoint or watchpoint condition
can only occur some time after EmbeddedICE macrocell has been
programmed.

Note: This restriction does not apply in any event to the Debug
Control or Status registers.
Disabling EmbeddedICE Macrocell 9-17
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9.11 Debug Communication Channel

The EmbeddedICE macrocell contains a communication channel for
passing information between the target and the host debugger. This is
implemented as coprocessor 14.

The communications channel consists of a 32-bit wide Communications
Data Read register, a 32-bit wide Communications Data Write register
and a 6-bit wide Communications Control register for synchronized
handshaking between the processor and the asynchronous debugger.
These registers live in fixed locations in EmbeddedICE macrocell’s
memory map (as shown in Table 9.1) and are accessed from the
processor using the MCRand MRCinstructions to coprocessor 14.

9.11.1 Debug Communications Control Registers

The Debug Communications Control register is read only and allows
synchronized handshaking between the processor and the debugger.

Figure 9.7 Debug Communications Control Register

The function of each register bit is described below:

0001 [31:28]

W 1
Denotes whether the Communications Data Write
register is free or not. If the Communications Data Write
register is free (W = 0) then new data may be written. If
it is not free (W = 1), then the processor must poll until
W = 0. From the debugger’s point of view, if W = 1 then
some new data has been written which may then be
scanned out.

R 0
Denotes whether there is some new data in the
Communications Data Read register. If R = 1, then there
is some new data which may be read using an MRC
instruction. If R = 0 then the Communications Data Read

31 28 27 2 1 0

0001 . . . W R
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register is free and new data may be placed there
through the scan chain. If R = 1, then this denotes that
data previously placed there through the scan chain has
not been collected by the processor and so the debugger
must wait.

From the debugger’s point of view, the registers are accessed using the
scan chain in the usual way. From the processor, these registers are
accessed using coprocessor register transfer instructions.

The following instructions should be used:

MRC P14, 0, Rd, C0, C0, 0

Returns the Debug Communications Control register into Rd

MCR P14, 0, Rn, C1, C0, 0

Writes the value in Rn to the Communications Data Write register

MRC P14, 0, Rd, C1, C0, 0

Returns the Debug Data Read register into Rd

Since the THUMB instruction set does not contain coprocessor
instructions, it is recommended that these are accessed using SWI
instructions when in THUMB state.

9.11.2 Communication Through the Communications Channel

Communication between the debugger and the processor occurs as
follows. When the processor wishes to send a message to
EmbeddedICE macrocell, it first checks that the Communications Data
Write register is free for use. This is done by reading the Debug
Communications Control register to check that the W bit is clear. If it is
clear then the Communications Data Write register is empty and a
message is written by a register transfer to the coprocessor. The action
of this data transfer automatically sets the W bit. If on reading the W bit
it is found to be set, then this implys that previously written data has not
been picked up by the debugger and thus the processor must poll until
the W bit is clear.

As the data transfer occurs from the processor to the Communications
Data Write register, the W bit is set in the Debug Communications
Control register. When the debugger polls this register it sees a
Debug Communication Channel 9-19
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synchronized version of both the R and W bit. When the debugger sees
that the W bit is set it can read the Communications Data Write register
and scan the data out. The action of reading this data register clears the
W bit of the Debug Communications Control register. At this point, the
communications process may begin again.

Message transfer from the debugger to the processor is carried out in a
similar fashion. Here, the debugger polls the R bit of the Debug
Communications Control register. If the R bit is low then the Data Read
register is free and so data can be placed there for the processor to read.
If the R bit is set, then previously deposited data has not yet been
collected and so the debugger must wait.

When the Communications Data Read register is free, data is written
there using the scan chain. The action of this write sets the R bit in the
Debug Communications Control register. When the processor polls this
register, it sees an MCLK synchronized version. If the R bit is set then
this denotes that there is data waiting to be collected, and this can be
read using a CPRT load. The action of this load clears the R bit in the
Debug Communications Control register. When the debugger polls this
register and sees that the R bit is clear, this denotes that the data has
been taken and the process may now be repeated.
9-20 EmbeddedICE Macrocell
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Chapter 10
Instruction Cycle
Operations
This chapter describes the ARM7TDMI core instruction cycle operations.
It contains the following sections:

• Section 10.1, “Introduction,” page 10-2

• Section 10.2, “Branch and Branch with Link,” page 10-2

• Section 10.3, “THUMB Branch with Link,” page 10-3

• Section 10.4, “Branch and Exchange (BX),” page 10-4

• Section 10.5, “Data Operations,” page 10-5

• Section 10.6, “Multiply and Multiply Accumulate,” page 10-7

• Section 10.7, “Load Register,” page 10-9

• Section 10.8, “Store Register,” page 10-10

• Section 10.9, “Load Multiple Registers,” page 10-10

• Section 10.10, “Store Multiple Registers,” page 10-12

• Section 10.11, “Data Swap,” page 10-13

• Section 10.12, “Software Interrupt and Exception Entry,” page 10-14

• Section 10.13, “Coprocessor Data Operation,” page 10-15

• Section 10.14, “Coprocessor Data Transfer (Memory to
Coprocessor),” page 10-16

• Section 10.15, “Coprocessor Data Transfer (from Coprocessor to
Memory),” page 10-18

• Section 10.16, “Coprocessor Register Transfer (Load from
Coprocessor),” page 10-20

• Section 10.17, “Coprocessor Register Transfer (Store to
Coprocessor),” page 10-21
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• Section 10.18, “Undefined Instructions and Coprocessor Absent,”
page 10-22

• Section 10.19, “Unexecuted Instructions,” page 10-23

• Section 10.20, “Instruction Speed Summary,” page 10-23

10.1 Introduction

In the following tables nMREQ and SEQ (which are pipelined up to one
cycle ahead of the cycle to which they apply) are shown in the cycle in
which they appear, so they predict the type of the next cycle. The
address, MAS[1:0], nRW, nOPC, nTRANS and TBIT (which appear up to
half a cycle ahead) are shown in the cycle to which they apply. The
address is incremented for prefetching of instructions in most cases.
Since the instruction width is 4 bytes in ARM state and 2 bytes in
THUMB state, the increment will vary accordingly. Hence the letter L is
used to indicate instruction length (4 bytes in ARM state and 2 bytes in
THUMB state). Similarly, the letter i indicates the width of the instruction
fetch (i = 2 in ARM state and i = 1 in THUMB state) representing word
and halfword accesses respectively.

10.2 Branch and Branch with Link

A branch instruction calculates the branch destination in the first cycle,
while performing a prefetch from the current PC. This prefetch is done in
all cases, since by the time the decision to take the branch has been
reached it is already too late to prevent the prefetch.

During the second cycle a fetch is performed from the branch
destination, and the return address is stored in register 14 if the link bit
is set.

The third cycle performs a fetch from the destination + L, refilling the
instruction pipeline, and if the branch with link R14 is modified (4 is
subtracted from it) to simplify return from SUB PC,R14,#4 to MOV
PC,R14 . This makes the STM..{R14} LDM..{PC} type of subroutine
work correctly. The cycle timings are shown below in Table 10.1.
10-2 Instruction Cycle Operations
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10.3 THUMB Branch with Link

A THUMB Branch with Link operation consists of two consecutive
THUMB instructions.

The first instruction acts like a simple data operation, taking a single
cycle to add the PC to the upper part of the offset, storing the result in
Register 14 (LR).

The second instruction acts in a similar fashion to the ARM Branch with
Link instruction, thus its first cycle calculates the final branch destination
while performing a prefetch from the current PC.

The second cycle of the second instruction performs a fetch from the
branch destination and the return address is stored in R14.

The third cycle of the second instruction performs a fetch from the
destination + 2, refilling the instruction pipeline and R14 is modified
(2 subtracted from it) to simplify the return to MOV PC, R14. This makes
the PUSH {..,LR} ; POP {..,PC} type of subroutine work correctly.

The cycle timings of the complete operation are shown in Table 10.2.

Table 10.1 Branch Instruction Cycle Operations 1

1. This table applies to branches in ARM and THUMB state, and to Branch with
Link in ARM state only.

Cycle Address MAS[1:0] 2

2. i = 2 in ARM state and i = 1 in THUMB state.

nRW Data nMREQ SEQ nOPC

1 pc + 2L3

3. pc is the address of the branch instruction.

i 0 (pc + 2L) 0 0 0

2 alu4

4. alu is an address calculated by the core.

i 0 (alu)5

5. (alu) are the contents of that address.

0 1 0

3 alu + L i 0 (alu + L) 0 1 0

alu + 2L
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10.4 Branch and Exchange (BX)

A Branch and Exchange operation takes 3 cycles and is similar
to a Branch.

In the first cycle, the branch destination and the new core state are
extracted from the register source, while performing a prefetch from the
current PC. This prefetch is performed in all cases, since by the time the
decision to take the branch has been reached, it is already too late to
prevent the prefetch.

During the second cycle, a fetch is performed from the branch
destination using the new instruction width, depending on the state that
has been selected.

The third cycle performs a fetch from the destination + 2 or + 4
depending on the new specified state, refilling the instruction pipeline.
The cycle timings are shown in Table 10.3.

Table 10.2 THUMB Long Branch with Link

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

1 pc + 41

1. pc is the address of the first instruction of the operation.

1 0 (pc + 4) 0 1 0

2 pc + 61 1 0 (pc + 6) 0 0 0

3 alu 1 0 (alu) 0 1 0

4 alu + 2 1 0 (alu + 2) 0 1 0

alu + 4
10-4 Instruction Cycle Operations
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10.5 Data Operations

A data operation executes in a single datapath cycle except where the
shift is determined by the contents of a register. A register is read onto
the A bus, and a second register or the immediate field onto the B bus.
The ALU combines the A bus source and the shifted B bus source
according to the operation specified in the instruction, and the result
(when required) is written to the destination register. (Compares and
tests do not produce results, only the ALU status flags are affected.)

An instruction prefetch occurs at the same time as the above operation,
and the program counter is incremented.

When the shift length is specified by a register, an additional datapath
cycle occurs before the above operation to copy the bottom 8 bits of that
register into a holding latch in the barrel shifter. The instruction prefetch
will occur during this first cycle, and the operation cycle will be internal
(i.e., will not request memory). This internal cycle can be merged with
the following sequential access by the memory manager as the address
remains stable through both cycles.

Table 10.3 Branch and Exchange Instruction Cycle Operations

Cycle Address 1 MAS [1:0] 2 nRW Data nMREQ SEQ nOPC TBIT 3

1 pc + 2W I 0 (pc + 2W) 0 0 0 T

2 alu i 0 (alu) 0 1 0 t

3 alu + w i 0 (alu + w) 0 1 0 t

alu + 2w

1. W and w represent the instruction width before and after the BX respectively. In ARM state the
width equals 4 bytes and in THUMB state the width equals 2 bytes. For example, when changing
from ARM to THUMB state, W would equal 4 and w would equal 2.

2. I and i represent the memory access size before and after the BX respectively. In ARM state, the
MAS[1:0] is 2 and in THUMB state MAS[1:0] is 1. When changing from THUMB to ARM state, I
would equal 1 and i would equal 2.

3. T and t represent the state of the TBIT before and after the BX respectively. In ARM state TBIT is
0 and in THUMB state TBIT is 1. When changing from ARM to THUMB state, T would equal 0
and t would equal 1.
Data Operations 10-5
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The PC may be one or more of the register operands. When it is the
destination, external bus activity may be affected. If the result is written
to the PC, the contents of the instruction pipeline are invalidated, and the
address for the next instruction prefetch is taken from the ALU rather
than the address incrementer. The instruction pipeline is refilled before
any further execution takes place, and during this time exceptions are
locked out.

PSR Transfer operations exhibit the same timing characteristics as the
data operations except that the PC is never used as a source or
destination register. The cycle timings are shown below Table 10.4.

Table 10.4 Data Operation Instruction Cycle Operations

Cycle Address MAS[1:0] 1 nRW Data nMREQ SEQ nOPC

normal 1 pc + 2L i 0 (pc + 2L) 0 1 0

pc + 3L

dest = pc 1 pc + 2L i 0 (pc + 2L) 0 0 0

2 alu i 0 (alu) 0 1 0

3 alu + L i 0 (alu + L) 0 1 0

alu + 2L

shift(Rs) 1 pc + 2L i 0 (pc + 2L) 1 0 0

2 pc + 3L i 0 – 0 1 1

pc + 3L

shift(Rs)
dest = pc2

1 pc + 8 2 0 (pc + 8) 1 0 0

2 pc + 12 2 0 – 0 0 1

3 alu 2 0 (alu) 0 1 0

4 alu + 4 2 0 (alu + 4) 0 1 0

alu + 8

1. i = 2 in ARM state and i = 1 in THUMB state
2. Shifted register with destination equals PC is not possible in THUMB state.
10-6 Instruction Cycle Operations
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10.6 Multiply and Multiply Accumulate

The multiply instructions make use of special hardware which
implements integer multiplication with early termination. All cycles except
the first are internal.

The cycle timings are shown in the following four tables, where m is the
number of cycles required by the multiplication algorithm; see Section
10.20, “Instruction Speed Summary,” for more information.

Table 10.5 Multiply Instruction Cycle Operations

Cycle Address nRW MAS[1:0] 1

1. i = 2 in ARM state and i = 1 in THUMB state.

Data nMREQ SEQ nOPC

1 pc + 2L 0 i (pc + 2L) 1 0 0

2 pc + 3L 0 i – 1 0 1

• pc + 3L 0 i – 1 0 1

m pc + 3L 0 i – 1 0 1

m + 1 pc + 3L 0 i – 0 1 1

pc + 3L

Table 10.6 Multiply Accumulate Instruction Cycle
Operations

Cycle Address nRW MAS[1:0] 1

1. i = 2 in ARM state and i = 1 in THUMB state.

Data nMREQ SEQ nOPC

1 pc + 8 0 2 (pc + 8) 1 0 0

2 pc + 8 0 2 – 1 0 1

• pc + 12 0 2 – 1 0 1

m pc + 12 0 2 – 1 0 1

m + 1 pc + 12 0 2 – 1 0 1

m + 2 pc + 12 0 2 – 0 1 1

pc + 12
Multiply and Multiply Accumulate 10-7
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Table 10.7 Multiply Long Instruction Cycle Operation

Cycle Address nRW MAS[1:0] 1

1. i = 2 in ARM state and i = 1 in THUMB state.

Data nMREQ SEQ nOPC

1 pc + 2L 0 i (pc + 2L) 1 0 0

2 pc + 3L 0 i – 1 0 1

• pc + 3L 0 i – 1 0 1

m pc + 3L 0 i – 1 0 1

m + 1 pc + 3L 0 i – 1 0 1

m + 2 pc + 3L 0 i – 0 1 1

pc + 3L

Table 10.8 Multiply Accumulate 1 Long Instruction Cycle Operation

1. Multiply Accumulate is not possible in THUMB state.

Cycle Address nRW MAS[1:0] 2

2. i = 2 in ARM state and i = 1 in THUMB state.

Data nMREQ SEQ nOPC

1 pc + 8 0 2 (pc + 8) 1 0 0

2 pc + 8 0 2 – 1 0 1

• pc + 12 0 2 – 1 0 1

m pc + 12 0 2 – 1 0 1

m + 1 pc + 12 0 2 – 1 0 1

m + 2 pc + 12 0 2 – 1 0 1

m + 3 pc + 12 0 2 – 0 1 1

pc + 12
10-8 Instruction Cycle Operations
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10.7 Load Register

The first cycle of a load register instruction performs the address
calculation. The data is fetched from memory during the second cycle,
and the base register modification is performed during this cycle (if
required). During the third cycle the data is transferred to the destination
register, and external memory is unused. This third cycle may normally
be merged with the following prefetch to form one memory N-cycle. The
cycle timings are shown below in Table 10.9.

Either the base or the destination (or both) may be the PC, and the
prefetch sequence will be changed if the PC is affected by the instruction.

The data fetch may abort, and in this case the destination modification
is prevented

Table 10.9 Load Register Instruction Cycle Operations

Cycle Address MAS[1:0] 1

1. i = 2 in ARM state and i = 1 in THUMB state.

nRW Data nMREQ SEQ nOPC nTRANS

normal 1 pc + 2L i 0 (pc + 2L) 0 0 0 c2

2. c represents current mode-dependent value.

2 alu b/h/w3

3. b, h and w are byte, halfword and word as defined in Section 9.5, “Debug Control Register.”

0 (alu) 1 0 1 d4

4. d will either be 0 if the T bit has been specified in the instruction (eg. LDRT), or c at all other times.

3 pc + 3L i 0 – 0 1 1 c

pc + 3L

dest = pc5

5. Destination equals PC is not possible in THUMB state.

1 pc + 2 0 (pc + 8) 0 0 0 c

2 alu 0 pc’ 1 0 1 d

3 pc + 12 2 0 – 0 0 1 c

4 pc’ 2 0 (pc’) 0 1 0 c

5 pc’ + 4 2 0 (pc’ + 4) 0 1 0 c

pc’ + 8
Load Register 10-9
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10.8 Store Register

The first cycle of a store register is similar to the first cycle of load
register. During the second cycle the base modification is performed, and
at the same time the data is written to memory. There is no third cycle.

10.9 Load Multiple Registers

The first cycle of LDM is used to calculate the address of the first word
to be transferred, while performing a prefetch from memory. The second
cycle fetches the first word, and performs the base modification. During
the third cycle, the first word is moved to the appropriate destination
register while the second word is fetched from memory, and the modified
base is latched internally in case it is needed to patch up after an abort.
The third cycle is repeated for subsequent fetches until the last data word
has been accessed, then the final (internal) cycle moves the last word to
its destination register. The cycle timings are shown in Table 10.11.

The last cycle may be merged with the next instruction prefetch to form
a single memory N-cycle.

If an abort occurs, the instruction continues to completion, but all register
writing after the abort is prevented. The final cycle is altered to restore
the modified base register (which may have been overwritten by the load
activity before the abort occurred).

When the PC is in the list of registers to be loaded the current instruction
pipeline must be invalidated.

Table 10.10 Store Register Instruction Cycle Operations

Cycle Address MAS[1:0] 1 nRW Data nMREQ SEQ nOPC nTRANS

1 pc + 2L i 0 (pc + 2L) 0 0 0 c2

2 alu b/h/w3 1 Rd 0 0 1 d4

pc + 3L

1. i = 2 in ARM state and i = 1 in THUMB state.
2. c represents current mode dependent value.
3. b, h, and w are byte, halfword and word as defined in Section 9.5, “Debug Control Register.”
4. d will either be 0 if the T bit has been specified in the instruction (e.g., SDRT), or c at all other times.
10-10 Instruction Cycle Operations
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Note: The PC is always the last register to be loaded, so an abort
at any point will prevent the PC from being overwritten.

LDM with destination = PC cannot be executed in THUMB
state. However POP{Rlist,PC} equates to an LDM with
destination = PC.

Table 10.11 Load Multiple Registers Instruction Cycle Operations

Cycle Address MAS[1:0] 1 nRW Data nMREQ SEQ nOPC

1 register 1 pc + 2L i 0 (pc + 2L) 0 0 0

2 alu 2 0 (alu) 1 0 1

3 pc + 3L i 0 – 0 1 1

pc + 3L

1 register
dest = pc

1 pc + 2L i 0 (pc + 2L) 0 0 0

2 alu 2 0 pc’ 1 0 1

3 pc + 3L i 0 – 0 0 1

4 pc’ i 0 (pc’) 0 1 0

5 pc’ + L i 0 (pc’ + L) 0 1 0

pc’ + 2L

n registers
(n > 1)

1 pc + 2L i 0 (pc + 2L) 0 0 0

2 alu 2 0 (alu) 0 1 1

• alu + • 2 0 (alu + •) 0 1 1

n alu + • 2 0 (alu + •) 0 1 1

n + 1 alu + • 2 0 (alu + •) 1 0 1

n + 2 pc + 3L i 0 – 0 1 1

pc + 3L

(Sheet 1 of 2)
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10.10 Store Multiple Registers

Store multiple registers proceeds very much as load multiple, without the
final cycle. The restart problem is much more straightforward here, as
there is no wholesale overwriting of registers. The cycle timings are
shown in Table 10.12, below.

.

n registers
(n > 1)
incl pc

1 pc + 2L i 0 (pc + 2L) 0 0 0

2 alu 2 0 (alu) 0 1 1

• alu + • 2 0 (alu + •) 0 1 1

n alu + • 2 0 (alu + •) 0 1 1

n + 1 alu + • 2 0 pc’ 1 0 1

n + 2 pc + 3L i 0 – 0 0 1

n + 3 pc’ i 0 (pc’) 0 1 0

n + 4 pc’ + L i 0 (pc’ + L) 0 1 0

pc’ + 2L

1. i = 2 in ARM state and i = 1 in THUMB state.

Table 10.11 Load Multiple Registers Instruction Cycle Operations (Cont.)

Cycle Address MAS[1:0] 1 nRW Data nMREQ SEQ nOPC

(Sheet 2 of 2)

Table 10.12 Store Multiple Registers Instruction Cycle Operations

Cycle Address MAS[1:0] 1 nRW Data nMREQ SEQ nOPC

1 register 1 pc + 2L i 0 (pc + 2L) 0 0 0

2 alu 2 1 Ra 0 0 1

pc + 3L

(Sheet 1 of 2)
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10.11 Data Swap

This is similar to the load and store register instructions, but the actual
swap takes place in cycles 2 and 3. In the second cycle, the data is
fetched from external memory. In the third cycle, the contents of the
source register are written out to the external memory. The data read in
cycle 2 is written into the destination register during the fourth cycle. The
cycle timings are shown below in Table 10.13.

The LOCK output of the core is driven HIGH for the duration of the swap
operation (cycles 2 and 3) to indicate that both cycles should be allowed
to complete without interruption.

The data swapped may be a byte or word quantity (b/w).

The swap operation may be aborted in either the read or write cycle, and
in both cases the destination register will not be affected.

n registers
(n > 1)

1 pc + 8 i 0 (pc + 2L) 0 0 0

2 alu 2 1 Ra 0 1 1

• alu + • 2 1 R • 0 1 1

n alu + • 2 1 R • 0 1 1

n + 1 alu + • 2 1 R • 0 0 1

pc + 12

1. i = 2 in ARM state and i = 1 in THUMB state.

Table 10.12 Store Multiple Registers Instruction Cycle Operations (Cont.)

Cycle Address MAS[1:0] 1 nRW Data nMREQ SEQ nOPC

(Sheet 2 of 2)
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.

10.12 Software Interrupt and Exception Entry

Exceptions (and software interrupts) force the PC to a particular value
and refill the instruction pipeline from there. During the first cycle the
forced address is constructed, and a mode change may take place. The
return address is moved to R14 and the CPSRto SPSR_svc.

During the second cycle the return address is modified to facilitate return,
though this modification is less useful than in the case of branch with link.

The third cycle is required only to complete the refilling of the instruction
pipeline. The cycle timings are shown below in Table 10.14.

Table 10.13 Data Swap Instruction Cycle Operations 1

1. Data swap cannot be executed in THUMB state.

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC LOCK

1 pc + 8 2 0 (pc + 8) 0 0 0 0

2 Rn b/w2

2. b and w are byte and word as defined in Section 9.5, “Debug Control Register.”

0 (Rn) 0 0 1 1

3 Rn b/w 1 Rm 1 0 1 1

4 pc + 12 2 0 – 0 1 1 0

pc + 12
10-14 Instruction Cycle Operations
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10.13 Coprocessor Data Operation

This operation cannot occur in THUMB state. A coprocessor data
operation is a request from the core for the coprocessor to initiate some
action. The action need not be completed for some time, but the
coprocessor must commit to doing it before driving CPB LOW.

If the coprocessor can never do the requested task, it should leave CPA
and CPB HIGH. If it can do the task, but can’t commit right now, it should
drive CPA LOW but leave CPB HIGH until it can commit. The core will
busy-wait until CPB goes LOW. The cycle timings are shown in
Table 10.15.

Table 10.14 Software Interrupt Instruction Cycle Operations

Cycle Address
MAS
[1:0] 1

1. i = 2 in ARM state and i = 1 in THUMB state.

nRW Data nMREQ SEQ nOPC nTRANS Mode TBIT

1 pc + 2L2

2. pc is for software interrupts is the address of the SWI instruction. For exceptions is the address of
the instruction following the last one to be executed before entering the exception.For prefetch
aborts is the address of the aborting instruction. For data aborts is the address of the instruction
following the one which attempted the aborted data transfer.

i 0 (pc + 2L) 0 0 0 C3

3. C represents the current mode dependent value.

old mode T4

4. T represents the current state dependent value.

2 Xn5

5. Xn is the appropriate trap address.

2 0 (Xn) 0 1 0 1 exception
mode

0

3 Xn + 4 2 0 (Xn + 4) 0 1 0 1 exception
mode

0

Xn + 8
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10.14 Coprocessor Data Transfer (Memory to Coprocessor)

This operation cannot occur in THUMB state.Here the coprocessor
should commit to the transfer only when it is ready to accept the data.
When CPB goes LOW, the core will produce addresses and expect the
coprocessor to take the data at sequential cycle rates. The coprocessor
is responsible for determining the number of words to be transferred, and
indicates the last transfer cycle by driving CPA and CPB HIGH.

The core spends the first cycle (and any busy-wait cycles) generating the
transfer address, and performs the write-back of the address base during
the transfer cycles. The cycle timings are shown in Table 10.16.

Table 10.15 Coprocessor Data Operation Instruction Cycle Operations 1

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC nCPI CPA CPB

ready 1 pc + 8 0 2 (pc + 8) 0 0 0 0 0 0

pc + 12

not
ready

1 pc + 8 0 2 (pc + 8) 1 0 0 0 0 1

2 pc + 8 0 2 – 1 0 1 0 0 1

• pc + 8 0 2 – 1 0 1 0 0 1

n pc + 8 0 2 – 0 0 1 0 0 0

pc + 12

1. This operation cannot occur in THUMB state.
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Table 10.16 Coprocessor Data Transfer Instruction Cycle Operations 1

Cycle Address
MAS
[1:0] nRW Data nMREQ SEQ nOPC nCPI CPA CPB

1
register
ready

1 pc + 8 2 0 (pc + 8) 0 0 0 0 0 0

2 (alu) 2 0 (alu) 0 0 1 1 1 1

pc + 12

1
register
not
ready

1 pc + 8 2 0 (pc + 8) 1 0 0 0 0 1

2 pc + 8 2 0 – 1 0 1 0 0 1

• pc + 8 2 0 – 1 0 1 0 0 1

n pc + 8 2 0 – 0 0 1 0 0 0

n + 1 alu 2 0 (alu) 0 0 1 1 1 1

pc + 12

m
registers
(m > 1)
ready

1 pc + 8 2 0 (pc + 8) 0 0 0 0 0 0

2 alu 2 0 (alu) 0 1 1 1 0 0

• alu + • 2 0 (alu + •) 0 1 1 1 0 0

n alu + • 2 0 (alu + •) 0 1 1 1 0 0

n + 1 alu + • 2 0 (alu + •) 0 0 1 1 1 1

pc + 12

(Sheet 1 of 2)
Coprocessor Data Transfer (Memory to Coprocessor) 10-17



ARM.book  Page 18  Wednesday, November 25, 1998  1:11 PM
10.15 Coprocessor Data Transfer (from Coprocessor to
Memory)

This operation cannot occur in THUMB state. The core controls these
instructions exactly as for memory to coprocessor transfers, with the one
exception that the nRW line is inverted during the transfer cycle. The
cycle timings are show in Table 10.17.

m
registers
(m > 1)
not
ready

1 pc + 8 2 0 (pc + 8) 1 0 0 0 0 1

2 pc + 8 2 20 – 1 0 1 0 0 1

• pc + 8 2 0 – 1 0 1 0 0 1

n pc + 8 2 0 – 0 0 1 0 0 0

n + 1 alu 2 0 (alu) 0 1 1 1 0 0

• alu + • 0 (alu + •) 0 1 1 1 0 0

n +
m2

alu + • 2 0 (alu + •) 0 1 1 1 0 0

n + m
+ 1

alu + • 2 2 (alu + •) 0 0 1 1 1 1

pc + 12

1. This operation cannot occur in THUMB state.
2. m is number of registers being transferred, n is the number of cycles.

Table 10.16 Coprocessor Data Transfer Instruction Cycle Operations 1 (Cont.)

Cycle Address
MAS
[1:0] nRW Data nMREQ SEQ nOPC nCPI CPA CPB

(Sheet 2 of 2)
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Table 10.17 Coprocessor Data Transfer Instruction Cycle Operations 1

Cycle Address
MAS
[1:0] nRW Data nMREQ SEQ nOPC nCPI CPA CPB

1
register
ready

1 pc + 8 2 0 (pc + 8) 0 0 0 0 0 0

2 alu 2 0 (alu) 0 0 1 1 1 1

pc + 12

1
register
not
ready

1 pc + 8 2 0 (pc + 8) 1 0 0 0 0 1

2 pc + 8 2 0 – 1 0 1 0 0 1

• pc + 8 2 0 – 1 0 1 0 0 1

n pc + 8 2 0 – 0 0 1 0 0 0

n + 1 alu 2 0 (alu) 0 0 1 1 1 1

pc + 12

m
registers
(m > 1)
ready

1 pc + 8 2 0 (pc + 8) 0 0 0 0 0 0

2 alu 2 0 (alu) 0 1 1 1 0 0

• alu + • 2 0 (alu + •) 0 1 1 1 0 0

n alu + • 2 0 (alu + •) 0 1 1 1 0 0

n + 1 alu + • 2 0 (alu + •) 0 0 1 1 1 1

pc + 12

(Sheet 1 of 2)
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10.16 Coprocessor Register Transfer (Load from
Coprocessor)

This operation cannot occur in THUMB state. Here the busy-wait cycles
are much as above, but the transfer is limited to one data word, and the
core puts the word into the destination register in the third cycle. The
third cycle may be merged with the following prefetch cycle into one
memory N-cycle as with all the register load instructions. The cycle
timings are shown in Table 10.18.

m
registers
(m > 1)
not
ready

1 pc + 8 2 0 (pc + 8) 1 0 0 0 0 1

2 pc + 8 2 0 – 1 0 1 0 0 1

• pc + 8 2 0 – 1 0 1 0 0 1

n pc + 8 2 0 – 0 0 1 0 0 0

n + 1 alu 2 0 (alu) 0 1 1 1 0 0

• alu + • 0 (alu + •) 0 1 1 1 0 0

n + m alu + • 2 0 (alu + •) 0 1 1 1 0 0

n + m
+ 1

alu + • 2 0 (alu + •) 0 0 1 1 1 1

pc + 12

1. This operation cannot occur in THUMB state.

Table 10.17 Coprocessor Data Transfer Instruction Cycle Operations 1 (Cont.)

Cycle Address
MAS
[1:0] nRW Data nMREQ SEQ nOPC nCPI CPA CPB

(Sheet 2 of 2)
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10.17 Coprocessor Register Transfer (Store to Coprocessor)

This operation cannot occur in THUMB state. This is the same operation
as the load from coprocessor, except that the last cycle is omitted. The
cycle timings are shown in Table 10.19.

Table 10.18 Coprocessor Register Transfer (Load from Coprocessor) 1

1. This operation cannot occur in THUMB state.

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC nCPI CPA CPB

ready 1 pc + 8 2 0 (pc +8) 1 1 0 0 0 0

2 pc + 12 2 0 CPdata 1 0 1 1 1 1

3 pc + 12 2 0 – 0 1 1 1 – –

pc + 12

not
ready

1 pc + 8 2 0 (pc + 8) 1 0 0 0 0 1

2 pc + 8 2 0 – 1 0 1 0 0 1

• pc + 8 2 0 – 1 0 1 0 0 1

n pc + 8 2 0 – 1 1 1 0 0 0

n + 1 pc + 12 2 0 CPdata 1 0 1 1 1 1

n + 2 pc + 12 2 0 – 0 1 1 1 – –

pc + 12
Coprocessor Register Transfer (Store to Coprocessor) 10-21
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10.18 Undefined Instructions and Coprocessor Absent

This operation cannot occur in THUMB state. When a coprocessor
detects a coprocessor instruction which it cannot perform, and this must
include all undefined instructions, it must not drive CPA or CPB LOW.
These will remain HIGH, causing the undefined instruction trap to be
taken. Cycle timings are shown in Table 10.20.

Table 10.19 Coprocessor Register Transfer (Store to Coprocessor) 1

1. This operation cannot occur in THUMB state.

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC nCPI CPA CPB

ready 1 pc + 8 2 0 (pc + 8) 1 1 0 0 0 0

2 pc + 12 2 1 Rd 0 0 1 1 1 1

pc + 12

not
ready

1 pc + 8 2 0 (pc + 8) 1 0 0 0 0 1

2 pc + 8 2 0 – 1 0 1 0 0 1

• pc + 8 2 0 – 1 0 1 0 0 1

n pc + 8 2 0 – 1 1 1 0 0 0

n + 1 pc + 12 2 1 Rd 0 0 1 1 1 1

pc + 12
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10.19 Unexecuted Instructions

Any instruction whose condition code is not met will fail to execute. It will
add one cycle to the execution time of the code segment in which it is
embedded (see Table 10.21).

10.20 Instruction Speed Summary

Due to the pipelined architecture of the CPU, instructions overlap
considerably. In a typical cycle one instruction may be using the data
path while the next is being decoded and the one after that is being
fetched. For this reason the following table presents the incremental

Table 10.20 Undefined Instruction Cycle Operations 1

1. Coprocessor Instructions cannot occur in THUMB state.

Cycle Address
MAS
[1:0] nRW Data nMREQ SEQ nOPC nCPI CPA CPB nTRANS Mode TBIT

1 pc + 2L i2

2. i = 2 in ARM state and i = 1 in THUMB state.

0 (pc +
2L)

1 0 0 0 1 1 C3

3. C represents the current mode-dependent value.

Old T4

4. T represents the current state-dependent value.

2 pc + 2L i 0 – 0 0 0 1 1 1 C Old T

3 Xn 2 0 (Xn) 0 1 0 1 1 1 1 00100 0

4 Xn + 4 2 0 (Xn
+ 4)

0 1 0 1 1 1 1 00100 0

Xn + 8

Table 10.21 Unexecuted Instruction Cycle Operations

Cycle Address
MAS
[1:0] 1

1. i = 2 in ARM state and i = 1 in THUMB state.

nRW Data nMREQ SEQ nOPC

1 pc + 2L i 0 (pc + 2L) 0 1 0

pc + 3L
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number of cycles required by an instruction, rather than the total number
of cycles for which the instruction uses part of the processor. Elapsed
time (in cycles) for a routine may be calculated from these figures which
are shown in Table 10.22. These figures assume that the instruction is
actually executed. Unexecuted instructions take one cycle.

n The number of words transferred

m =1 Bits [32:8] of the multiplier operand are all zero or one.
2 Bits[32:16] of the multiplier operand are all zero or one.
3 Bits[31:24] of the multiplier operand are all zero or all one.
4 Otherwise.

b The number of cycles spent in the coprocessor busy-wait loop.

If the condition is not met all the instructions take one S-cycle. The cycle
types N (Nonsequential), S (Sequential), I (Internal), and C (Coprocessor
register transfer) are defined in Chapter 6, "Memory Interface."

Table 10.22 ARM Instruction Speed Summary

Instruction Cycle count Additional

Data Processing 1S + 1I for SHIFT(Rs)
+ 1S + 1N if R15 written

MSR, MRS 1S

LDR 1S + 1N + 1I + 1S + 1N if R15 loaded

STR 2N

LDM nS + 1N + 1I + 1S + 1N if R15 loaded

STM (n - 1)S + 2N

SWP 1S + 2N + 1I

B,BL 2S + 1N

SWI, trap 2S + 1N

MUL 1S + mI

MLA 1S + (m + 1)I

(Sheet 1 of 2)
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MULL 1S + (m + 1)I

MLAL 1S + (m + 2)I

CDP 1S + bI

LDC,STC (n − 1) S + 2N + bI

MCR 1N + bI + 1C

MRC 1S + (b + 1)I + 1C

Table 10.22 ARM Instruction Speed Summary (Cont.)

Instruction Cycle count Additional

(Sheet 2 of 2)
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Chapter 11
Production Test
This chapter describes the ARM7TDMI core production test interface,
and contains the following sections:

• Section 11.1, “Core Testing Strategy Overview,” page 11-1

• Section 11.2, “Scan Test Pin Definitions,” page 11-2

• Section 11.3, “Full-Scan Production Testing,” page 11-2

11.1 Core Testing Strategy Overview

The core implements a full scan methodology for production testing. In
addition to the two existing core functional debug scan chains, an
additional scan chain spans the entire core and can use the SCAN_EN
and MCLK signals in any of the functional clock domains. This new scan
chain is 1709 cells long and encompasses both positive and negative
edge driven devices. To allow either return to zero (RT0) or return to one
(RT1) scan clocks, data lock-up latches have been inserted on the test
inputs between flip-flops with complimentary clock polarity.

For production testing of the register file (internal three-port memory), the
core uses the production scan chain to serially load RAMBIST data into
the internal RAM ports. During scan mode, control of WENCTEST, the
write enable signal, is always available at the core periphery. To minimize
vector overhead during serial RAMBIST pattern loading, the core leaves
the production scan chain segment surrounding the internal memory
isolated and accessible during the RAM test mode.
Book Title 11-1
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11.2 Scan Test Pin Definitions

Table 11.1 lists the core signals associated with production scan testing.
For more information on any of the signals listed, please see Chapter 2,
“Signal Descriptions.”

11.3 Full-Scan Production Testing

Although the production scan chain uses a single scan clock (MCLK),
both nRESET and nTRST can affect flip-flop state and have been added
so that ATPG can detect additional faults. MCLK may be either return to
one (RT1) or return to zero (RT0) for the core scan testing.

Using a two-stage pattern generation method in Mentor Fastscan, the
overall fault coverage for the core is 98.2%. The first stage utilizes
conventional ATPG simulation and the second stage applies a sequential
RAM test to further increase the fault coverage.

Table 11.1 Scan Test Pins

Pin Name Pin Definition
ATPG
Patterns

Register
File Patterns

Normal
Operation

FULLSCAN Master scan mode select ‘1’ ‘1’ 0

RAMTEST Ramtest scan mode select ‘0’ ‘1’ 0

SCAN_EN Global scan enable Scan_en Scan_en 0

SCAN_IN Full scan chain input Scan_in ‘X’ X

SCAN_OUT Full scan chain output Scan_out ‘X’ –

RAMSCAN_IN Ramtest scan chain input ‘X’ Scan_in X

RAMSCAN_OUT Ramtest scan chain output ‘X’ Scan_out –

WENCTEST Ramtest write enable ‘X’ Write Enable X

MCLK Global scan clock Scan Clock Scan Clock –

nTRST JTAG asynchronous reset Scan Clock Scan Clock 0

nRESET Reset Scan Clock Scan Clock 1
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11.3.1 Register File Testing

The core implements the register file as a three port (two read, one write)
RAM. To completely test the entire register file, the core is designed to
allow testing of both the RAM and the RAM control logic.

RAM Control Logic Test – This is possible by substituting the register
file netlist for a RAM test model. This netlist model enables the ATPG
tool to understand the RAM control logic and produce ATPG vectors that
propagate RAM faults, which allows coverage of the circuit elements
directly connected to the RAM.

RAM Test – This is accomplished by multiplexing the register file ports
to the nearest scan elements, which allows for controllable RAM inputs
and observable RAM outputs. To control RAM inputs and observe RAM
outputs, the core serially loads and unloads data through the newly
formed truncated scan path.

The RAM scan chain ends are always available at the core periphery.
The register file write enable control line is also multiplexed with
WENCTEST to allow external control during RAM testing. This
arrangement is shown in Figure 11.1.

Figure 11.1 Register File Testing Scan Path

Control Observe
Register

File

RAMTESTRAMSCAN_IN RAMSCAN_OUT

Write Enable

WENCTESTSCAN_IN SCAN_OUT
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Serial test patterns are generated directly from the memory RAMBIST
pattern. A test wrapper (for VHDL or Verilog) is provided with the core
that performs the necessary data manipulation and generates the
strobes needed to drive the ramtest circuitry. Test duration is minimized
by simultaneous pattern loading and response unloading. The parallel
RAMBIST patterns contain 270 patterns giving a simulation duration of
approximately 22,000 vectors.
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Chapter 12
Specifications
The maximum MCLK operating frequency and other AC timing values
are dependent upon the technology used to implement the core. All AC
timing parameters are listed in the CW00100x ARM7TDMI
Microprocessor Core Datasheet, available from LSI Logic. For example,
the CW001004 datasheet includes AC timing for the core implemented
in LSI Logic’s G10 technology.
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Appendix A
ARM7TDMI Changes
This appendix describes the differences between this manual and the
ARM7TDMI Data Sheet (ARM document number ARM DDI 0029E), but
does not describe any layout changes. The purpose of this appendix is
to enable a reader familiar with the ARM document to identify areas
where LSI Logic’s ARM7TDMI microprocessor core differs from the
common ARM implementation.

• The preface and front material have been changed.

• Chapter 1, “Introduction” includes a new section that provides an
overview of the LSI Logic ARM7TDMI microprocessor core.

• The logic diagram in Chapter 1 has moved to Chapter 2 and now
also includes eight new production test signals.

• Chapter 2 includes descriptions of new pins added for production
test.

• Any information about transistor sizes is technology-dependent and
has been removed.

• The signal descriptions of TCK1 and TCK2 have changed to reflect
that the LSI Logic ARM7TDMI core implementation uses
edge-sensitive logic rather than level-sensitive logic.

• Detailed information on the ARM and THUMB Instruction Sets has
been removed from Chapter 4, “ARM Instruction Set Summary” and
Chapter 5, “THUMB Instruction Set Summary”. See the ARM
Architecture Reference Manual for a complete description of all
instructions.

• Section 3.12, “Pipeline Architecture,” was added to describe the
operation of the core pipeline.

• Chapter 8 does not include the section, “Clock Switch During Test,”
as this test mode is not required for the LSI Logic implementation.
A-1
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• Chapter 11 has been added to describe the LSI Logic production test
implementation.
A-2 ARM7TDMI Changes



ARM.book  Page 3  Wednesday, November 25, 1998  1:11 PM
Customer Feedback
We would appreciate your feedback on this document. Please copy the
following page, add your comments, and fax it to us at the number
shown.

If appropriate, please also fax copies of any marked-up pages from this
document.

Important: Please include your name, phone number, fax number, and
company address so that we may contact you directly for
clarification or additional information.

Thank you for your help in improving the quality of our documents.



ARM.book  Page 4  Wednesday, November 25, 1998  1:11 PM
Reader’s Comments

Fax your comments to: LSI Logic Corporation
Technical Publications
M/S E-198
Fax: 408.433.4333

Please tell us how you rate this document: ARM7TDMI Microprocessor
Core Technical Manual. Place a check mark in the appropriate blank for
each category.

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you
directly for clarification or additional information.

Excellent Good Average Fair Poor

Completeness of information ____ ____ ____ ____ ____
Clarity of information ____ ____ ____ ____ ____
Ease of finding information ____ ____ ____ ____ ____
Technical content ____ ____ ____ ____ ____
Usefulness of examples and
illustrations

____ ____ ____ ____ ____

Overall manual ____ ____ ____ ____ ____

Name Date

Telephone

Title

Company Name

Street

City, State, Zip

Department Mail Stop

Fax
Customer Feedback



U.S. Distributors
by State

ARM.book  Page 5  Wednesday, November 25, 1998  1:11 PM
H. H. Hamilton Hallmark
W. E. Wyle Electronics

Alabama
Huntsville
H. H. Tel: 205.837.8700
W. E. Tel: 800.964.9953

Alaska
H. H. Tel: 800.332.8638

Arizona
Phoenix
H. H. Tel: 602.736.7000
W. E. Tel: 800.528.4040
Tucson
H. H. Tel: 520.742.0515

Arkansas
H. H. Tel: 800.327.9989

California
Irvine
H. H. Tel: 714.789.4100
W. E. Tel: 800.626.9953
Los Angeles
H. H. Tel: 818.594.0404
W. E. Tel: 800.288.9953
Sacramento
H. H. Tel: 916.632.4500
W. E. Tel: 800.627.9953
San Diego
H. H. Tel: 619.571.7540
W. E. Tel: 800.829.9953
San Jose
H. H. Tel: 408.435.3500
Santa Clara
W. E. Tel: 800.866.9953
Woodland Hills
H. H. Tel: 818.594.0404

Colorado
Denver
H. H. Tel: 303.790.1662
W. E. Tel: 800.933.9953

Connecticut
Chesire
H. H. Tel: 203.271.5700
Wallingford
W. E. Tel: 800.605.9953

Delaware
North/South
H. H. Tel: 800.526.4812

Tel: 800.638.5988

Florida
Fort Lauderdale
H. H. Tel: 305.484.5482
W. E. Tel: 800.568.9953
Orlando
H. H. Tel: 407.657.3300
W. E. Tel: 407.740.7450
Tampa
W. E. Tel: 800.395.9953
St. Petersburg
H. H. Tel: 813.507.5000
Georgia
Atlanta
H. H. Tel: 770.623.4400
W. E. Tel: 800.876.9953

Hawaii
H. H. Tel: 800.851.2282

Idaho
H. H. Tel: 801.266.2022

Illinois
North/South
H. H. Tel: 847.797.7300

Tel: 314.291.5350
Chicago
W. E. Tel: 800.853.9953

Indiana
Indianapolis
H. H. Tel: 317.575.3500
W. E. Tel: 888.358.9953

Iowa
Cedar Rapids
H. H. Tel: 319.393.0033

Kansas
Kansas City
H. H. Tel: 913.663.7900

Kentucky
Central/Northern/ Western
H. H. Tel: 800.984.9503

Tel: 800.767.0329
Tel: 800.829.0146

Louisiana
North/South
H. H. Tel: 800.231.0253

Tel: 800.231.5575

Maine
H. H. Tel: 800.272.9255

Maryland
Baltimore
H. H. Tel: 410.720.3400
W. E. Tel: 800.863.9953

Massachusetts
Boston
H. H. Tel: 978.532.9808
W. E. Tel: 800.444.9953

Michigan
Detroit
H. H. Tel: 313.416.5800
W. E. Tel: 888.318.9953
Grandville
H. H. Tel: 616.531.0345

Minnesota
Minneapolis
H. H. Tel: 612.881.2600
W. E. Tel: 800.860.9953

Mississippi
H. H. Tel: 800.633.2918
Missouri
St. Louis
H. H. Tel: 314.291.5350

Montana
H. H. Tel: 800.526.1741

Nebraska
H. H. Tel: 800.332.4375

Nevada
Las Vegas
H. H. Tel: 800.528.8471
W. E. Tel: 702.765.7117

New Hampshire
H. H. Tel: 800.272.9255

New Jersey
North/South
H. H. Tel: 201.515.1641

Tel: 609.222.6400
Oradell
W. E. Tel: 201.261.3200
Pine Brook
W. E. Tel: 800.862.9953

New Mexico
Albuquerque
H. H. Tel: 505.293.5119

New York
Long Island
H. H. Tel: 516.434.7400
W. E. Tel: 800.861.9953
Rochester
H. H. Tel: 716.475.9130
W. E. Tel: 800.319.9953
Syracuse
H. H. Tel: 315.453.4000

North Carolina
Raleigh
H. H. Tel: 919.872.0712
W. E. Tel: 800.560.9953

North Dakota
H. H. Tel: 800.829.0116

Ohio
Cleveland
H. H. Tel: 216.498.1100
W. E. Tel: 800.763.9953
Dayton
H. H. Tel: 614.888.3313
W. E. Tel: 800.763.9953

Oklahoma
Tulsa
H. H. Tel: 918.459.6000

Oregon
Portland
H. H. Tel: 503.526.6200
W. E. Tel: 800.879.9953
Pennsylvania
Pittsburgh
H. H. Tel: 412.281.4150
Philadelphia
H. H. Tel: 800.526.4812
W. E. Tel: 800.871.9953

Rhode Island
H. H. 800.272.9255

South Carolina
H. H. Tel: 919.872.0712

South Dakota
H. H. Tel: 800.829.0116

Tennessee
East/West
H. H. Tel: 800.241.8182

Tel: 800.633.2918

Texas
Austin
H. H. Tel: 512.219.3700
W. E. Tel: 800.365.9953
Dallas
H. H. Tel: 214.553.4300
W. E. Tel: 800.955.9953
El Paso
H. H. Tel: 800.526.9238
Houston
H. H. Tel: 713.781.6100
W. E. Tel: 800.888.9953
Rio Grande Valley
H. H. Tel: 210.412.2047

Utah
Draper
W. E. Tel: 800.414.4144
Salt Lake City
H. H. Tel: 801.365.3800
W. E. Tel: 800.477.9953

Vermont
H. H. Tel: 800.272.9255

Virginia
H. H. Tel: 800.638.5988

Washington
Seattle
H. H. Tel: 206.882.7000
W. E. Tel: 800.248.9953

Wisconsin
Milwaukee
H. H. Tel: 414.513.1500
W. E. Tel: 800.867.9953

Wyoming
H. H. Tel: 800.332.9326
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LSI Logic Corporation
Corporate Headquarters
Tel: 408.433.8000
Fax: 408.433.8989

NORTH AMERICA

California
Irvine

♦Tel: 714.553.5600
Fax: 714.474.8101

San Diego
Tel: 619.613.8300
Fax: 619.613.8350

Wireless Design Center
Tel: 619.350.5560
Fax: 619.350.0171

Silicon Valley
♦Tel: 408.433.8000

Fax: 408.954.3353

Colorado
Boulder
Tel: 303.447.3800
Fax: 303.541.0641

Florida
Boca Raton
Tel: 561.989.3236
Fax: 561.989.3237

Illinois
Schaumburg

♦Tel: 847.995.1600
Fax: 847.995.1622

Kentucky
Bowling Green
Tel: 502.793.0010
Fax: 502.793.0040

Maryland
Bethesda
Tel: 301.897.5800
Fax: 301.897.8389

Massachusetts
Waltham

♦Tel: 781.890.0180
Fax: 781.890.6158

Minnesota
Minneapolis

♦Tel: 612.921.8300
Fax: 612.921.8399

New Jersey
Edison

♦Tel: 732.549.4500
Fax: 732.549.4802

♦

♦

♦

♦

♦

New York
New York
Tel: 716.223.8820
Fax: 716.223.8822

North Carolina
Raleigh
Tel: 919.785.4520
Fax: 919.783.8909

Oregon
Beaverton
Tel: 503.645.0589
Fax: 503.645.6612

Texas
Austin
Tel: 512.388.7294
Fax: 512.388.4171

Dallas
Tel: 972.509.0350
Fax: 972.509.0349

Houston
Tel: 281.379.7800
Fax: 281.379.7818

Washington
Issaquah
Tel: 425.837.1733
Fax: 425.837.1734

Canada
Ontario
Ottawa
Tel: 613.592.1263
Fax: 613.592.3253

Toronto
Tel: 416.620.7400
Fax: 416.620.5005

Quebec
Montreal
Tel: 514.694.2417
Fax: 514.694.2699

INTERNATIONAL

Australia
New South Wales
Reptechnic Pty Ltd
Tel: 612.9953.9844
Fax: 612.9953.9683

China
Beijing
LSI Logic International
Services Inc
Tel: 86.10.6804.2534.40
Fax: 86.10.6804.2521

♦

♦

♦

♦

♦

♦

♦

Denmark
Ballerup
LSI Logic Development
Centre
Tel: 45.44.86.55.55
Fax: 45.44.86.55.56

France
Paris
LSI Logic S.A.
Immeuble Europa
Tel: 33.1.34.63.13.13
Fax: 33.1.34.63.13.19

Germany
Munich
LSI Logic GmbH
Tel: 49.89.4.58.33.0
Fax: 49.89.4.58.33.108

Stuttgart
Tel: 49.711.13.96.90
Fax: 49.711.86.61.428

Hong Kong
Hong Kong
AVT Industrial Ltd
Tel: 852.2428.0008
Fax: 852.2401.2105

India
Bangalore
LogiCAD India Private Ltd
Tel: 91.80.526.2500
Fax: 91.80.338.6591

Israel
Ramat Hasharon
LSI Logic
Tel: 972.3.5.480480
Fax: 972.3.5.403747

Netanya
VLSI Development Centre
Tel: 972.9.657190
Fax: 972.9.657194

Italy
Milano
LSI Logic S.P.A.
Tel: 39.039.687371
Fax: 39.039.6057867

Japan
Tokyo
LSI Logic K.K.
Tel: 81.3.5463.7821
Fax: 81.3.5463.7820

Osaka
Tel: 81.6.947.5281
Fax: 81.6.947.5287

♦

♦

♦

♦

♦

♦

Korea
Seoul
LSI Logic Corporation of
Korea Ltd
Tel: 82.2.528.3400
Fax: 82.2.528.2250

The Netherlands
Eindhoven
LSI Logic Europe Ltd
Tel: 31.40.265.3580
Fax: 31.40.296.2109

Singapore
Singapore
LSI Logic Pte Ltd
Tel: 65.334.9061
Fax: 65.334.4749

Sweden
Stockholm
LSI Logic AB
Tel: 46.8.444.15.00
Fax: 46.8.750.66.47

Switzerland
Brugg/Biel
LSI Logic Sulzer AG
Tel: 41.32.536363
Fax: 41.32.536367

Taiwan
Taipei
LSI Logic Asia-Pacific
Tel: 886.2.2718.7828
Fax: 886.2.2718.8869

Avnet-Mercuries
Corporation, Ltd
Tel: 886.2.2503.1111
Fax: 886.2.2503.1449

Jeilin Technology
Corporation, Ltd
Tel: 886.2.2248.4828
Fax: 886.2.2242.4397

Lumax International
Corporation, Ltd
Tel: 886.2.2788.3656
Fax: 886.2.2788.3568

United Kingdom
Bracknell
LSI Logic Europe Ltd
Tel: 44.1344.426544
Fax: 44.1344.481039

Sales Offices with
Design Resource Centers


